LIFELINES

USPS 59

The Software Magaz

)

7-830

-2575,

ISSN 0279

(

No. 10

Volume IlI

March 1983

00

$3

10 1961 VS 19627 4 GUARTERS DEC 23 1%0e

Annual Report, 1982
Unit Sales and Dollar Volume
PRODUCTA, Quarterly Unit Sales, $39.95/unit net:

1981 1982 :
Ist 821 1037 :
2nd 510 600 OR il | | }

3rd 385 530
4th 1020 1298 ER L

2736 3465 TOTAL UNITS 18 PRODUCTS! 1381 THRU 1382 DEC 23 1382

$109.303.20 $138426.75 TOTAL SALES #

PRODUCT B, Quarterly Unit Sales, $24.95/unit net:

wroe <4m-4z3cO

wro® <<=-213CO

1981 1982
Ist 1196 1240
2nd 624 803
3rd 590 752
4th 1365 1810 * J . B v .
3775 4605 TOTAL UNITS —o— SR =g
S 94,186.25 $114,894.75 TOTAL SALES 1901 auarTERS aLL PRODUCTS
PRODUCT C, Quarterly Unit Sales, $49.95/unit net: : PR p—— ai PRODUCTS
1981 1982 . ,
Ist 745 697
2nd 485 401
3rd 380 365
4th 851 812
2461 2275 TOTAL UNITS
$122,803.90 $113,636.25 1901

1982 1 2 3

On the left, you have numbers which are important, but can be a bore to read. And it’s easy to
miss important trends embedded in those numbers.

On the right are graphic aspects of the same numbers. Graphics that are quickly understand-
able, visually dynamic, and all available from one package, dGRAPH™ by Fox & Geller.

That's right. dGRAPH gives you the flexibility to produce bar charts, pie charts, line graphs, and
combination piebar charts. All of them are easy to do, as easy as naming the kind of graph you
want and what kind of data you want to graph. That's it. dGRAPH's unique AUTOGRAPH™ fea-
ture takes care of the rest in seconds. That includes loading data, computing scales, drawing grid
lines, shading, overlay graphs (if any), and labelling. And the results are transferable to EPSON,
OKIDATA, and a growing list of other popular printers so as to enhance your meetings and reports.
You get all of the above capabilities plus powerful data manipulation features so you can graph
various fields—all this for just $295.00.

So, dBASE Il users, which would you prefer? We think dGRAPH is the obvious answer. Don't
you?

Ask for dGRAPH by name at your local computer dealer. And while you're there, see Fox &
Geller’s full line of quality software. Software that’s practical, reliable, and reasonably priced.
Software that's created by Jeff Fox and Jacob Geller, individuals who stand behind every product
that bears their names.

Use the Reader Service Card for more information. Or contact:

Fox & Geller, Inc.

PO. Box 1053
Teaneck, NJ 07666
(201) 837-0142

dGRAPH is also available for non-dBASE Il users!

dBASE Il is a trademark of Ashton-Tate. dGRAPH and AUTOGRAPH
are trademarks of Fox & Geller.

LIFELINES

The Software Magazine

Publisher: Edward H. Currie

Production Manager: Harold Black

Art and Design Manager: Kate Gartner

Marketing & Circulation Manager: Patricia Matthews
Typographer: Harold Black

Software Consultant: Susan Sawyer

Editorial

2 Editorial
Edward H. Currie

Features

3 Get A Better Performance
Out of CB-80
Robert P. Van Natta

10 Where Am |? When Did | Get Here?
Steven Fisher

15 The Z80 Instruction Set
Shakers & Movers
Kim West DeWindt

18 CP/M Interfaces to the Human Being
Bob Kowitt

25 Review of Micro Resources
Washington Version 3.2
Charles Strom

Managing Editor: Patricia Matthews

New Versions Editor: Lee Ramos

Technical Editor: Al Bloch

Technical Consultant: Emil Sturniolo

Cover: K. Gartner

Printing Consultant: Sid Robkoff/E&S Graphics

29 An Introduction To 8086
Programming
John Blanton

Product Status Reports
35 New Products
36 New Versions
36 New Publications

Miscellaneous
9 Call for Manuscripts

17 Call for Bug Reports
28 Clarification

MicroMoneymakers’ Forum

12 Dealing With CP/M’s Directory
Bottleneck
Charles E. Sherman

Copyright © 1982, by Lifelines Publishing Corporation. No portion
of this publication may be reproduced without the written
permission of the publisher. The single issue price is $3.00 for
copies sent to destinations in the U.S., Canada, or Mexico. The
single issue price for copies sent to all other countries is $4.30. All
checks should be made payable to Lifelines Publishing
Corporation. Foreign checks must be in U.S. dollars, drawn on a
US. bank; checks, money order, VISA, and MasterCard are
acceptable. All orders must be pre-paid. Please send all
correspondence to the Publisher at the address below.

Lifelines (ISSN 0279-2575, USPS 597-830) is published monthly at
a subscription price of $24 for twelve issues, when destined for the
U.S., Canada, or Mexico, $50 when destined for any other country.

Second-class postage paid at New York, New York, and other loca-
tions. POSTMASTER, please send changes of address to Lifelines
Publishing Corporation, 1651 Third Ave., New York, N.Y. 10028.

Program names are generally TMs of their authors or owners. The CP/M Users Group is not
affiliated with Digital Research, Inc.

Lifelines - TM Lifelines Publishing Corp.

The Software Magazine - TM Lifelines Publishing Corp.

SB-80, SB-86 - TMs Lifeboat Associates.

CP/M and CP/M-86 reg. TMs, Access Manager, PLI-80, PLI-86, Pascal MT, MP/M, TMs of Digital
Research Inc.

BASIC-80, MBASIC, Fortran 80 — TMs Microsoft, Inc.

KIBITS - TM Bess Garber

Wordmaster & WordStar — TMs MicroPro International Corp.

PMATE - TMs Phoenix Software Associates, Ltd.

Z80 - TM Zilog Corporation

Mr. Edit - TM Micro Resources Corp.

MINCE - TM, Mark of the Unicorn.

&g

inion

Editorial

Tis All Done With Mirrors My Son...

There is perhaps no more interesting
realm to contemplate than that of the
cognitive process. The intensity and
pace of brain research has increased
considerably in recent years and con-
tinues its inexorable march towards
an understanding of what is perhaps
to be the most intriguing of comput-
ers. Technology has been hard
pressed to rival the physiological and
psychological marvels of the brain
but continues an inexorable march of
its own leaving the casual observer to
wonder what will be next revealed.
Packing densities in the human brain
are on the order of 107 circuits/cm3
with switching speeds on the order
10 milliseconds. Memory density is
believed to be on the order of 105
bits/cm® which leads to an estimate of
some 10 switching elements in the
brain.

The basic unit of time in the realm of
of the microcomputer is the nano-
second. A convenient rule of thumb
is that one nanosecond is to one sec-
ond as one second is to thirty years.
Typical speeds for interesting events
in todays microcomputers are on the
order of hundreds of nanoseconds.
Now it might seem on the face of it
that this is awfully fast and that there
could be little reason for wanting to
have things take place much faster!
But consider the following, suppose
that you wish to test all possible se-
quences of 25 instructions in a micro-
computer just to be sure that there is
no particular sequence which will
send the processor into the twilight
zone. Let’s further assume that the
typical instruction takes on the order
of 1.6 microseconds (i.e. 1600 nano-
seconds). Then all possible combina-
tions of 25 instructions would take
about 787,000,000,000 years! Assum-
ing of course that we were executing
625,000 instructions per second over
this period.

Thus it’s relatively easy to see that ex-
ecuting instructions rapidly is very
important in some cases. But elec-
trons and holes do have mass , i.e.,
inertia, and therefore getting them to
rapidly accelerate does require more
effort the higher the switching

speeds, i.e. accelerations. Technolo-
gists are therefore in search of tech-
niques for increasing switching
speeds and while the rest of us
realize that fluid and mechanical
computers are now little more than
historical artifacts we assume that
future computers will be electronic
marvels. But perhaps not ...

The upper limit on switching speeds
for transistors of the type used in
semiconductor microprocessors is
on the order of one nanosecond. In
casting around for alternate ap-
proaches, optical devices come to
mind. In particular, the optical tran-
sistor is now a reality with switching
speeds on the order of one pico-
second, i.e. 1000 times faster than its
electronic counterpart. But perhaps
even more exciting is the prospect of
basic switching components which
have more than two stable output
states as compared to transistor
switches which are either on or off
(i.e. in a “zero” or “one” state). This
might well result in the development
of entirely new concepts of computer
design and architecture. Further-
more these “optical transistors let’s
call them optsistors, are capable of
parallel operating modes as com-
pared to the serial operations of their
transistor counterparts. Thus not
only can such devices do more things
but they can do them simultaneously
and in more ways.. . .

Thin-film technology in conjunction
with laser technology could be com-
bined to build computers of the fu-
ture linked by optical fibers to open a
realm as yet undreamt of by today’s
computer types. Perhaps computers
of the future will be hybrids combin-
ing the best features of biology, op-
tics, lasers and electronics. And as to-
morrow’s child asks how does it
work the reply may well be ‘tis all
done with mirrors my son ..
* * *

The rapid proliferation of microcom-
puters continues apace with histor-
ians beginning to make efforts to re-
cord in detail the happenings of
recent years. Unfortunately much is
being lost in the translation. Claims
and counter claims abound as to who

Edward H. Currie

did what first, said what first and the
origins of many important contribu-
tions are in real danger of being lost
forever.

In the months ahead we'll cover in
wide ranging discussions some of
the more fundamental contributions
to microcomputerdom and those re-
sponsible for them.

Most of those who have made note-
worthy contributions are intelligent,
sensitive people who if they have
been recognized at all failed to get the
proper credit. We'll attempt to iden-
tify such people for you and point
out those who in some sense have
been obscured but nonetheless have
provided and still provide the foun-
dation upon which the microcom-
puter world continues to build.

One such individual is Ward Chris-
tensen. Ward has done much to pro-
vide the foundation for the quality
and quantity of public domain soft-
ware and its free and frequent ex-
change by setting high standards for
documenting of source code, provid-
ing a de facto standard for asynch-
ronous telecommunications, spear-
heading the CPM Users Group
(CPMUG), computerized bulletin
boards, etc. Ward asked recently who
was responsible for providing the
first CBBS system and was told that it
was some guy in Chicago. After a few
moments reflection he realized that
they were referring to none other
than Ward Christensen !

Or what about Kelly Smith who at
his own expense and with a consid-
erable expenditure of his time has
provided thousands of hours of ac-
cess to his CBBS in Simi Valley, Cali-
fornia. Kelly maintains 20 Megabytes
of public domain software free for
the asking. Not to mention a sizable
contribution of his own software
which he has insisted be made avail-
able to all those who wanted it.

And there are many more, some of
whom have made small contribu-
tions and others large but each pro-
vided a vital link in the development
of microcomputers and microcom-
puter software.

Kathy McMahon called the other
(continued on page 9)
Lifelines/TheSoftware Magazine, March 1983

Feature

Get a Better Performance
Out of CB-80

The goal of this article is to explore a
number of possibilities for getting
better performance out of CB-80 pro-
grams. It should not be assumed that
the suggestions which follow will
give similar results in other dialects
of Basic. Some will and some won't!

Performance, when applied to a high
level language such as CB-80, usually
means four things: 1) Run time
speed; 2) code size; 3) compiler be-
havior; and 4) memory manage-
ment.

Most of this article will be addressed
to the first two of these items. With
respect to the third, if you have ver-
sion 1.3 or later of CB-80, you may
have considerable confidence that it
works. The earlier versions had some
significant problems but were re-
placed free to registered users. At last
report, Digital Research had a ver-
sion 14 in the works but hadn't de-
cided on a release date or just how it
would be different from version 1.3.

The most annoying bug in version 1.3
is its inability to allow the use of the
same user-defined function twice in
the same line and the accompanying
failure of the compiler to trap this
error.

Speed Is Not the Issue

A favorite saying of Gordon Eubanks
with respect to his CB-80 is that
“Speed is not the issue”. This claim,
wherever he makes it, seems to draw
a catcall or two out of every crowd,
and, if nothing else, the remarks here
may serve to address some of those
questions.

It is this writer’s notion that Gordon
is right, however. My reasons for this
conclusion are essentially that, given
the memory addressing capability of
the 8080 processor (64k), and the
disk capacity and printer perfor-
mance now customary, a hardware
feature is usually the limiting factor
in a program, not the raw speed of
the language. This is not to suggest
that CB-80 is slow. Quite to the con-
trary, itis quick. Itis, in fact, probably

quick enough for almost any applica-
tion, if you don’t do something stu-
pid so as to destroy its performance. I
shall presently document a few
“monkey wrenches” which, prop-
erly, should be left out of most pro-
grams. Obviously, no compiler is go-
ing to generate code which will run
as fast as the best assembly language
routines. If for no other reason, this
will always be true because the com-
piler must generate code to take into
account all the “worst case” situa-
tions. A compiler that blows up
when the user tries to do some exotic
thing with it is said to be buggy;
whereas dedicated code that will
perform a limited function well is
said to be optimized.

If The Program
Is Too Slow

Speed is, of course, relative. We all
dream of instant number crunching;
but that is, obviously, not possible.
Speed should be considered a prob-
lem if any of the following standards
are not met. Operator input loops
should generally accept input as
rapidly an an operator can enter it.
Maximum delays during operator in-
put routines ought not to exceed 2
seconds and these should be infre-
quent. Printer routines should pro-
duce data rapidly enough to keep the
printer busy. Display routines
should work at the speed of the hard-
ware. Crunching routines which re-
quire little or no operator interven-
tion must be completed with suffi-
cient dispatch so as to assure that the
operator is not late for his/her coffee
break.

If your pet program fails to run fast
enough to suit you, the first thing to
do is to figure out why. The most
common reason for slow programs is
disk bind. A program is said to be
disk bound when the disk opera-
tions are sufficiently frequent to af-
fect adversely the overall perfor-
mance of the program. Disk bind is
much easier to diagnose than to fix. If
you simply notice the correlation, or

Robert P. VanNatta

lack of it, between the disk activity
light and the annoying delays, you
have your answer. If disk bind is the
problem, faster code is not going to
solve the problem, as all forward
progress in your program must stop
during disk reads and writes. Solu-
tions to this problem involve getting
rid of either the disks or the ac-
cesses, and neither is language de-
pendent.

Optimize Record Lengths

One thing that can be done to im-
prove performance during disk reads
and writes is (when using random
access files) to assign record lengths
in multiples or sub-multiples of 128
bytes. Thus 32,64,128, and 256 are ex-
cellent choices for random file record
lengths. The reason for this is that
the typical CPM BIOS blocks the
disks in 128 byte sectors. Even
though sector-spanning reads and
writes are completely transparent to
the user, the fact remains that if any
record length is used other than a
multiple of the sector size, almost
every read or write will have to take
place in two different sectors in two
different locations on the disk. For
example, if a record length of 127
bytes is selected, only two out of
every 128 records will lie entirely
within a single sector. Similarly a rec-
ord length or 63 or 65 would result in
about half of the records spanning
sectors. A record length of 256 will
get the record in exactly 2 sectors in-
stead of scattering it over three.

The importance of record length op-
timization should not be overstated.
It will not cure disk bind, and since
most of the disk delay is accounted
for in the seek and head settling
times, the improved performance
will not be as dramatic as you might
expect at first blush. I mention it sim-
ply because it is not made all that
clear in the CP/M documentation,
and because the “Molasses in Jan-
uary” syndrome is usually caused by
a combination of trivial things, not
one big thing.

(continued on next page)
Lifelines/The Software Magazine, Volume III, Number 10 3

Find the Hot Spots

Itis a poorly kept secret that in a typi-
cal computer program 10% of the
code does 90% of the work. Identify
that code and give it your attention.
Nobody appreciates fast code that is
never used.

Use Integer Variables

The biggest single thing that you can
do for CB-80 code to improve perfor-
mance is to find some real variables
and convert them to integers.

As we have mentioned before, CB-80
is a native code compiler. If compiler
toggle T’ is set during compilations,
the assembly language instructions
generated will be interlisted with the
basic code. Such an interlisting is
very educational, even if you are not
a proficient assembly language pro-
grammer.

It has been said over and over again
that integer operations execute much
more rapidly than real number oper-
ations. If you interlist some simple
programs you will begin to under-
stand why. Most common activities
involving integers are processed by
the generation of a few inline assem-
bly language commands.

For example, a simple FOR-NEXT
loop using integer variables such as:

FOR 1% = 1 to 1000
NEXT 1%

generates only nine 8080 instruc-
tions, and makes no calls to the li-
brary, Figure 1 (see page 37) (with the
documentation added) is the code
displayed by the compiler with the
interlist (toggle I) set.

Note that there are only 6 instruc-
tions in the loop. Since this code
doesn’t look exactly like Ward Chris-
tensen has taught us to write it,
mainly because it is a relocatable
module and not executable code, I
took the liberty of compiling and
linking this program, and then exam-
ining it with DDT.

Finding the code wasn't all that diffi-
cult, since, if the linkage is done with
toggle M set, the address of the first
instruction in the module is re-
ported. The actual code relating to
this empty FOR-NEXT loop as found
on disassembly with DDT is as fol-
lows:

0399 LXI H,0001
039C SHLD 0514
039F JMP 03A9
03A2 LHLD 0514
03A5 INX H
03A6 SHLD 0514
03A9 LXI D FC17
03AC DAD D
03AD JNC 03A2

And, lo and behold, we find that the
linker has converted the pseudo-
assembly language into something
that would even get the approval of
Ward Christensen.

Now, I assume, there is someone
who can think of a way to recreate the
logic of a BASIC FOR-NEXT loop in
less than 9 instructions, but it seems
to this writer that the opportunity for
improvement is severely limited, no
matter who writes it. The only idea
that this writer has for writing faster
code than this would involve switch-
ing to a one byte data type and using
8 bit arithmetic. In theory, this would
make a faster loop, but the whole
idea is absurd because loop size
would also be limited to one byte or
255. Specifically, my stopwatch is not
programmed to detect the difference
in execution speed between a DAD
instruction and an ADD instruction
in 255 repetitions or less.

What About Generating
Code For Line Numbers

If you write programs that crash alot,
you probably appreciate a common
feature present in many versions of
BASIC that tells you what line you
crashed on. CB-80 does not normally
bother to give you this information;
however, a compiler toggle is pro-
vided to force this information into
the code. If this toggle is set, the
interlisting will reveal two additional
instructions for every logical line of
code as follows:

EXIT Y ;where 1is the line
number
CALL ?LNUM library routine
containing
;a SHLD (address)
; and a RET instruction.

The result, when compiled into the
empty FOR-NEXT loop, is the gener-
ation of this extra code twice, once for
each line. This compiler toggle is nec-
essary for the ERRL function to

work, but notice the price. A total of 8
instructions are added to a program
which only had 9 instructions to start
with. Four of these instructions are
inside the loop and are thus critical.
The hot spot in our loop has, accord-
ingly, gone from 6 instructions to 10
instructions. Percentagewise, thisis a
very heavy performance penalty,
and suggests that a program with
line numbers compiled in is going to
be a much different animal than one
without.

What About Real
Numbers in a Loop Index

The following loop looks similar to
the integer loop except for the fact
that it uses real numbers. The loop I
used is as follows:

FOR A.REAL = 1.0 to 1000
NEXT A.REAL

The similar appearance to the casual
programmer is very deceiving. Fig-
ure 2 (see page 37) shows the code
generated for a real loop!

The price of those six library calls is
very dear. I made some effort to
chase some of the them around the li-
brary with DDT. For the most part, I
got dizzy trying to follow the flow,
but I did satisfy myself that many of
these library calls involve the execu-
tion of hundreds of instructions.
Specifically, as nearly as I can tell the
integer loop runs about 100 times
faster than the real loop.

This does not mean that a real loop
does not have its place. In order to as-
sure an integer loop, the index, loop
delimiters, and step should all be
either integer constants or integer
variables. They may be positive or
negative. With respect to a real loop,
all delimiters may be any legal real
number. Likewise, they may be
either constants or variables. Fur-
thermore, they may be changed at
any time. This means, for example,
that if you need to run a FOR loop
with the stepping rate set equal to the
square root of the index variable, you
can do it.

Obviously, not every optimization
will result in a reduction of code
space required by 40% and increase
speed a factor of 100 times, but this
gives idea of the things that can be
done.

I would propose the following rule of

Lifelines/TheSoftware Magazine, March 1983

thumb: where speed is critical, go to
great extremes to use integers wher-
ever possible. Even if the ultimate re-
sult must be a real or string variable,
use integer variables for portions of
the calculations where possible, and
then make a conversion at the last
possible moment. Likewise, it
should be noted that the use of con-
stants wherever possible makes for
faster code. For example, if the loop
size in Figure 1 is changed from a
constant to a variable the amount of
code required for the loop will
double.

Use Complex Statements

My comments on the use of integers
should not be taken to imply that
CB-80 does a bad job on string opera-
tions. It is just that integers go like
lightning.

There are some things that can be
done to help real number crunching
and string jerking. This is principally
accomplished by building complex
nested functions. Consider the fol-
lowing program segment which is il-
lustrative of string operations:

a$="1kj"
a=len(a$)
b$=a$+"” “+d$
x$ =left$(b$,a+10)

Although a bit inane, this code seg-
ment, when compiled as a public
function, takes up 91 bytes of code
consisting of 27 op-codes including
12 calls to the CB-80 library. If this
code is wrapped in an integer based
FOR-NEXT loop, my Radio Shack
Model 16 (on the Z-80 Board) takes al-
most 10 seconds to execute that mess
1500 times.

When optimized that same code can
be made into a single line complex
statement as follows:

X$ e left$(”lkj” + " i d$,len(“lkj") JE 10)

This code will do the same thing.
However, it will compile as a public
function in 57 bytes of code contain-
ing only 14 in-line op-codes and 5
trips to the library. Execution time
was measured at under 3 seconds for
1500 iterations in a FOR-NEXT loop.
This figures out to about a 40% code
reduction and a speed increase by a
factor of over 3 times.

Curiously, I timed the same string
routines in CBASIC at 27 seconds
and 8 seconds repectively. My

clocked times for MBASIC ver. 4.51
were 17 seconds and 10 seconds, and
slightly longer with MBASIC with
TRSDOS. The real shocker, though,
was SBASIC. It is a native code com-
piling BASIC which I, unfortunately,
bought the month before CB-80 was
released. It required 56 seconds to ex-
ecute the multiline version 1500
times and 30 seconds for the one line
version. My profound conclusion is
that, as with all BASICS, CB-80 will
perform substantially better if efforts
are made to nest the functions. The
reason, at least in CB-80, for this in-
crease in performance is that when
functions are nested the results of
one calculation are passed directly to
the next function without a redun-
dant memory write and read in be-
tween.

Beware of phony
schemes to compact code

Not too long ago, had an occasion to
work with a college student whose
assignment of the day was to opti-
mize his program by reducing the
number of PRINT statements to the
lowest common denominator. He
was seeking to accomplish this by
using the word PRINT once, and
then putting everything but the
kitchen sink after it. One need only
interlist the code of a PRINT state-
ment once to find out that this
doesn’t accomplish a thing. The line

PRINT A;B;C;

compiles and generates exactly the
same code as:

PRINT A; :PRINT B; :PRINT C;

The reason is that the print routine
requires that the H-L register pair be
loaded with a pointer followed by a
call to one or two library functions
depending on what is being printed.
This has to be repeated as many
times are there are items to print. It
can be said, therefore, that the word
PRINT is implied for each item
printed, and nothing is to be gained
by economizing on its use.

Another myth that needs to be ex-
ploded is the idea that the following:

WHILE X0%<100
X0% =X0% +1 WEND

is somehow a more efficient alterna-
tive to a FOR-NEXT loop. Itisn’t! This
is not to say that WHILE loops don't
have their place. Just don’t use them

Lifelines/The Software Magazine, Volume III, Number 10

where a FOR-NEXT loop will work
just as well.

The integer WHILE loop uses a total
of eleven instructions compared to
the 9 for the FOR-NEXT loop. Ironic-
ally, the extra two instructions are not
where you would expect them to be.
The compiler is clever enough to in-
dex X0% with an IDX instruction in-
stead of using an add routine but the
catch comes with the condition test-
ing. The WHILE loop must handle a
number of relational operators and
so the DAD-JNC trick (see figure 1)
used on FOR-NEXT loops isn't used.

When using an index counter always
write it in the conventional form of:

X0% =X0% +1

and not as

X0% =1+X0%.
The second form requires four in-
structions instead of the three re-
quired for the first version. Worse
yet, however, is the following:
Y%=1:X%=X%+Y%
This compiles into a total of seven in-
structions and will therefore take
more than twice as long to execute as
the first version. Of course, if you
really like it slow, you can use REAL
numbers and make three dives for
thelibrary to access that famous BCD
math function.

Nested IFTHEN

The authors have bragged about
their nested IFTHEN statements in
CB-80. They take some getting use to.
I have been working with CB-80
since it first came on the market
about a year ago. Only now am I re-
luctantly becoming an advocate of
their use. Nested IFTHEN's provide
the opportunity to generate flow
control statements with a complexity
which challenges comprehension.
(Translation: It makes a rat’s nest!)
Please review, for a moment, Figure
3A and Figure 3B. These two func-
tions perform exactly the same job
and will compile to within 6 bytes of
the same amount of code. I wrote this
particular function for the purpose of
dealing with a name and address file
which was in all upper case that I
desired to print in lower case (except,
of course, for the first letter of each
word).

If you examine the function for
contents, you will observe that it
must test three conditions and toggle
a flag in order to get the job done.

(continued on next page)

5

Such an activity is a traditional place
for the use of the AND construct.
The logic is straightforward. If all
three conditions are true, do it;
otherwise, forget it!

The failure of this approach from a
performance standpoint is obvious.
All three conditions are always tested
before a decision is made. The more
sophisticated approach is to test the
conditions one at a time, and branch
immediately if a condition fails. After
all, what is the point in checking to
seeif anumber is too large if you have
already determined that it is too
small? Nested IFTHEN's permit just
this sort of flow control. Figure 3B
tests the conditions one at a time and
branches immediately. The results in
terms of performance are dramatic.
Function 3A requires the execution of
no less than 40 assembly language
instructions inside the loop to test
the conditions and control the flag.
By contrast, figure 3B requires that
only 12 instructions be executed if the
first test is failed, and a maximum of
19 instructions if all tests are true.

The price of efficiency
is complexity.

It is my argument that it is worth-
while to squeeze 20 or 30 instructions
out of a loop which is as tight as this
one. As I mentioned above, the total
amount of code is about the same;
but only half of it is executed on any
one pass. One of the most elegant
things about figure 3B is the way that
the flag toggle is buried. Figure 3A
methodically tests every character to
see if it is a space and then sets the
flag as indicated. On the other hand,
Figure 3B recognizes that there is no
reason to even check for a space un-
less the character fails the first test in-
dicating that it is ‘out of range-low’”.
Similar efficiencies follow on
through. The second test is for the
flag. If the flag is set, we release it,
and branch; otherwise, we conduct
the high-range test. At this point, we
get still another benefit of our se-
quential testing. We don’t have to
worry about releasing the flag on
completion of the operation. The rea-
son is obvious: you can't get to the
third test, if the flag is set!

For lack of a better term, I have
dubbed the procedure described
above as ‘multi-path flow control’. It
is surely a familiar concept to accom-
plished assembly language program-

mers, but I suspect that the idea of
playing hop-scotch in a rat maze is a
bit novel to the BASIC programmer.
Occasionally, I have seen the func-
tional equivalent of nested IFTHENs
generated with a handful of free
standing IFTHEN statements coup-
led with a bunch of GOTOs which
branch to still more IFTHENs and
GOTOs. My comments here should
not be construed as advocacy for
such coding.

What About XOR

For those of you ‘hep’ on ‘bit did-
dling’ you will notice that I have
chosen to implement the shift to
lower case with an ADD procedure:
CHRS(character% + 32) rather then
the equally correct XOR procedure:
CHRS$(character% XOR 32). This is
directly contrary to the recommen-
dations in my Radio Shack Guide to
Microsoft BASIC. The use of XOR
under these conditions does not ap-
pear to be appropriate in CB-80, how-
ever. The compiler output for the
XOR version requires four MOV in-
structions and two XRA instructions,
whereas the compiler output for the
addition is a single DAD instruction.
The result is that the latter compiles
in 5 less bytes of memory, and, al-
though the execution of the sixteen
bit addition is slower than the execu-
tion of the XRA instruction, it is
surely not slower then four MOVs
and two XRAs.

The lack of a one byte date type in
CB-80, and the absence of a 16 bit
XRA instruction in the 8080 instruc-
tion set, appear to dictate this result.
Presumably, however, when CB-80
becomes CB-86 or CB-68, we will find
a 16 bit EXCLUSIVE OR instruction
implemented, and the avoidance of
the XOR will no longer be justified.
For example, the instruction set for
the Motorola 68000 chip supports
"XORing’ between any of its registers
in the 32 bit (long word) mode?

I should note, however, that the XOR
does have a place. Specifically, if you
want to go both ways, i.e. change
lower case to upper case as well as
change upper case to lower case, the
XOR will do that. An XOR 32 will flip
the bit in position 5 of the companion
number. The effect of this when ap-
plied to the ASCII character set is to
swap cases on any letter in the alpha
range. | have disregarded the utility
of generating an upper case character

because of the existence of the built
in UCASES$ function in CB-80.

GOTO

We have all been taught to avoid the
use of the GOTO construct like the
plague. Reasons for this range from
claims that it is poor programming
style to technical arguments that in-
terpreter BASICs don't know where
to go without rescanning the entire
program in order to locate the match-
ing label. Similarly I have read nu-
merous works on strategies for ar-
ranging subroutines physically with-
in the program so they can be quickly
located during program execution.

The CB-80 compiler does not suffer
from these operational limitations.
Frequent use of GOTO in a program
may be evidence of poor program-
ming style, but it is not going to de-
stroy the performance of the pro-
gram. GOTO and GOSUB instruc-
tions generate JMP (label) and CALL
(label) compiler output, respectively.
The linker resolves the label ambi-
guity and assigns an absolute mem-
ory address making the GOTO con-
struct the quickest way to get there
from here. I have noted a tendency by
programmers, including myself, to
use what I will call a phony WHILE
loop. It is phony in the sense that
there is really no condition to test,
but, rather, what is really desired is a
backwards jump. Don't do it! All you
accomplish is to require the testing of
acondition that you don't care about.
A JZ (jump zero) is not going to get
you there quicker than a JMP. Simi-
larly, I have noted some confusion as
to the best way to get out of a WHILE
loop. If you are only looking at the
source code, it is tempting to think
that the best way out of a WHILE
loop is to force the condition to true
and fall out the bottom. This is not so.
The flow of control on a WHILE loop
is controlled by various permuta-
tions of JMP instructions. There is no
reason not to either enter or depart a
WHILE loop with a GOTO instruc-
tion. Entry in the middle is especially
useful if you have a routine that you
want executed at lease once prior to
testing for the condition. Likewise, if
you are in the middle of a WHILE
loop, and you are done with the loop,
and know you are done, JMP out!
Don’t waste the time forcing your
way out the bottom. In summary, in-
sofar as the flow of control goes, as

Lifelines/TheSoftware Magazine, March 1983

nearly as I can tell, all the flow control
is compiled ‘in line’ and relies on
familiar jump, jump conditional, and
call constructs. There are no algorith-
mic searches, seeks, or library calls to
get from point A to point B.

Similarly the loop constructs don't
have any stacks or other support fa-
cilities that have to be reset on entry
or exit. Thus WHILE and FOR loop-
ing constructs may be freely entered
and exited at any location within the
loop by use of any conditional or un-
conditional jump (IFTHEN, GOTO
etc.)

Use Lots of Functions

The October issue of Lifelines/The
Software Magazine carried an exten-
sive article on the use of functions
and that won't be repeated here, but
there are a few points that should be
emphasized. First, afunctionis a glo-
rified subroutine. It is accessed by
the program in the same fashion: a
CALL and RET(urn) instead of a
GOSUB and a RETURN. This pro-
cess is so efficient that you can save
code even if the particular routine is
used only twice in the entire pro-
gram. (You byte savers should also
take note that the compiler generates
aRET instruction out of the key word
FEND so you need not conclude your
function with a RETURN statement.)

Admittedly, if the function call re-
quires a number of parameters to be
passed, some extra code is going to
be used loading them on the stack for
passage; but oftentimes these pa-
rameters are constants which can be
passed directly, thereby avoiding a
clutter of assignment statements
which often precedes a subroutine
call.

The great appeal of the function,
however, is that it forces structure
and organization on the program,
which ultimately has some code sav-
ing benefits. This is especially true if
you are building overlays and follow
some of the procedures I outlined in
the October issue of Lifelines for mov-
ing functions to the root.

String Allocation

String operations are a bit mysterious
and you must not let yourself get out-
smarted by them. String allocation
and garbage collecting are perhaps
not the most exciting topics in the
world, but at least a nominal under-

standing of their workings will save
you some troubles. The crudest
method of string allocation is a fixed
allocation method. Under this ap-
proach, every string is assigned a
permanent string location and
enough memory to hold its maxi-
mum length. This method essen-
tially doesn’t work very well with
string intensive programs on micro-
computers, because the available
string space simply won't support
that luxury?

Dynamic allocation is the buzz word
associated with the concept of as-
signing memory space only as
needed. Regardless of whether
strings are declared, CB-80 does not
assign memory space to a string until
the first time that string is assigned a
value. Then, it is only assigned the
space that is needed. Internally, this
is handled by the maintenance of
2-byte pointers pointing to the ad-
dress of the string. The first two bytes
at the string location will hold the
length of the string and will be fol-
lowed by the string itself. (The
VARPTR and SADD functions return
information about these things.)

The allocation is fairly straightfor-
ward, but where everything gets
hairy is with the de-allocation. There
is no dispute with the concept that
string space ought to be released
when it is no longer needed. The
problem is "how’? The Microsoft ap-
proach is to let the garbage accumu-
late until it becomes a problem, and
then invoke a subroutine (while you
twiddle your fingers) to make a pass
through memory and clear away the
garbage. CB-80 by contrast attempts
to pick up its garbage as it goes. This
method works fairly well, but there
are ways that a programmer can trap
garbage in memory; and, once it is
there, it will stay there forever.

If you have a program that is having a
problem running out of memory, one
of the first things to do is to examine
your memory for wasted space. The
FRE function returns the amount of
memory that is not being used. The
MFRE function returns the amount
of memory that is available for use.
The difference between the two is
waste. If the values returned by these
functions are radically different, you
had best isolate the cause and do
something about it.

I have made no serious effort to docu-
ment the various ways to load the

Lifelines/The Software Magazine, Volume III, Number 10

memory with garbage, but I know of
two that I will mention.

Beware of Re-executing
DIM Statements

In CB-80, DIM statements are execut-
able, and an array may be re-dimen-
sioned at will. Certain precautions
are appropriate, however. The quick-
est way that I have found to blow up
the memory board is to re-execute a
DIM statement without first doing
some housekeeping.

A DIM statement, by definition, dy-
namically allocates space for an ar-
ray. If the same variable has pre-
viously been dimensioned those
dimensions will be clobbered. Stated
another way, a DIM statement gener-
ates space for a series of pointers. As-
suming that we are talking about a
string array, when the particular ele-
ment is first assigned a value, the
string is placed in the dynamic string
area and the address is placed in the
pointer location associated with that
element. Re-dimensioning does not
release the string space assigned to
the previous array; it merely over-
writes the pointer area, thereby leav-
ing the strings in memory forever. At
the risk of seeming redundant, I re-
peat, “You cannot get rid of an array
by re-dimensioning it”. This merely
cuts it loose in the middle of your
memory without a paddle.

How to make an array go
away

There is, of course, a correct way to
recover the space assigned to an ar-
ray. The process requires the express
release of all the array elements prior
to the re-dimensioning. As you will
recall, CB-80 does not assign a mem-
ory location to a string until it has first
been assigned a value. It is also true
that if a string variable is set equal to
another string variable which has not
been assigned a memory location,
then neither will have a memory lo-
cation. Thus, if you select a dummy
string variable which has never be-
fore been used and whip through a
FOR-NEXT loop assigning each ele-
ment in the array this null value you
can recover all the dynamic storage
area. If you then execute a DIM
A$(0), you can get within two bytes of
where you were before the array was
first used (assuming that A$ was the
array name). The form of the assign-

(continued on next page)

7

ment statement should be ‘<LET>
A$(i%) =NULLS' Do not use ‘<LET>
A$(i%)=""". The problem with the
latter statement is that it doesn't re-
lease the string; it merely makes it
into a string of zero length. It may
sound like double talk, but a string of
zero length is actually two bytes long
(the length pointer, you know). Any
string may potentially be 32K in
length because this length pointer
actually uses the low-order 15 bits of
the first two bytes of each string.
Since most string operations require
work space equal to the size of the
string, don't expect to generate very
many 32K strings in your 64K mem-
ory board.

Another Way To Butcher
Your Memory

As mentioned in a recent issue of the
Digital Research News, you can, if you
try hard enough, overpower the dy-
namic allocation system by churning
string variables of ever increasing
lengths through memory. CB-80 re-
quires that an entire string be stored
in a contiguous location in memory.
As a string grows in length, it is auto-
matically relocated to another mem-
ory area if it won't fit in the pre-
viously assigned area. Each string re-
location leaves behind potentially
unusable memory. One way to re-
duce the segmenting is to reduce the
number of relocations required. You
can stabilize the string area with a
pseudo-declaration. This is done by
initializing all of the string variables
that you intend to use actively with
dummy values of a length equal to
the maximum anticipated length of
that string. The initialization will
force all the strings so initialized to
find an adequate location right off
the bat. My own testing suggests that
memory wastage can be reduced by
as much as 15% by initializing the
strings in advance. I have had some
difficulty figuring out just what the
worst case situation is for memory
hashing. The problem seems mini-
mal where the overall string length is
low, because new strings will infill
the holes left by the relocations. My
testing procedures, which yielded
the 15% improvement, involved a
small number of strings which were
repeatedly concatenated to ever in-
creasing lengths until an OM (out of
memory) failure occurred.

Conclusions

In summary, even if you don’t under-
stand or program in assembly lan-
guage, compile your programs fre-
quently using the assembly language
listing toggle. Counting instructions
is a very good way to get an idea of a
place for improvement. If you see a
trivial piece of source code that gen-
erates a page and a half of output,
you know where to start. Complex,
deeply-nested statements usually re-
quire much less code than simple
one function per line coding. The
reason for this is that the compiler
can optimize nested functions, calcu-
lating the least significant one first.
The result can then be the input for
the next function until the entire
statement is worked out. By contrast,
if the functions are laid out one at a
time, after each calculation the result
must be stored and then retrieved for
the next calculation.

There is no fixed rule identifying the
‘proper’ depth to nest functions.
Function nesting forces a trade-off
between understandability and effi-
ciency. It can be assumed that if your
statements are too complex, you will
blow up the compiler. Unfortunately,
no one, apparently including Digital
Research, knows for sure just how
complex too complex is. I have yet to
cause a compiler explosion from an
overly complex statement but I un-
derstand that it can be done and that
Digital Research collects such exam-
plesin afile drawer somewhere, with
the idea of either eventually docu-
menting the maximum level of com-
plexity possible, or using the data as
a basis to justify modifying the com-
piler to accept even more complex
statements.

How much can be
saved with careful
optimization?

The first question that should be an-
swered before going on an optimiza-
tion kick is whether it is really neces-
sary. In my own experience, a
twenty-percent reduction in code
size has not been an unreasonable
goal. The problem is not unlike beat-
ing dirt out of a blanket: the more you
beat, the more you get, but. . .

Confession is good
for the soul

It is said that confession is good for
the soul. I don't know if that is so or
not, but what follows is designed to
discourage some sharp-eyed reader
from asking something embarrass-
ing, such as, “Why didn’t you apply
those rules of optimization to that
function that you published in the
October issue of Lifelines/The Software
Magazine?”

The truth is that the ‘flasher’ function
that I published in October is written
around code that I have just had
around for several years and have
used just because it was there; and it
worked. (Sharp-eyed readers will
also notice a significant similarity be-
tween my flasher function and sub-
routine 345 in the public domain Os-
borne accounting programs.) By
some coincidence, I chose to make it
the research vehicle around which
this article was written. It was only
when I attacked that function with a
broom and found that I was able to
achieve an astounding 40% reduc-
tion in code size, while maintaining
the same functionality, that I became
inspired to write this article. The re-
vised version appears as Figure 4 (see
page 37).

The version as published in October
requires a total of 238 bytes of code
space and another 40 bytes of data
area. The version presented as figure
4 will compile in 128 bytes of code
and requires 22 bytes of data area. A
two-byte pointer area is also required
for each COMMON variable.

The changes

First, note that all possible variables
are now integer. The original idea
had been to use real variables for the
loops because slow speed was the
goal of the flash function. Ten thou-
sand interations of an integer loop
does as well as 120 iterations of a real
loop in alot less code. Secondly, no-
tice that the redundant code was all
abolished.

The third change is also typical of the
sort of thing that must occur during
optimization sessions. I pitched the
entire guts out of the function and
came up with a brand new algorithm
to accomplish the flashing task.

Lifelines/TheSoftware Magazine, March 1983

There is, possibly, a better way than
using the MOD function to create a
flip-flop, but, if so, have not had my
nose rubbed in it.

A Final Note

If you are a tried and true CBASIC
programmer, the MOD function will
probably throw you for a loop, as it
doesn't exist in CBASIC. It is new in
CB-80. The form of the statement is:

MOD(x%,y %)

The value returned is an integer
equal to the remainder after the divi-
sion of x% by y%. In this sense, it
works like the Microsoft version
which would be: x% mod y%.

For those of you familiar with
PL/I-80, a word of caution is in order.
The form of the CB-80 statement is
identical to the PL/I statement, but it
doesn’t work like the PL/I statement
in that it appears to handle negative
numbers differently.

(continued on page 37)

1] added the documentation, and, since the li-
brary calls are not documented by Digital Re-
search, please regard my descriptions of the
library functions as tentative guesses. Identifi-
cation and documentation of all CB-80 library
calls would be most useful to anyone who has
the urge to write assembly language external
functions for use with CB-80; however, this
task is beyond the scope of this article. My de-
scription is based merely on casual observa-
tion.

2Digital Research has indicated an intention to
move CB-80 to both the 8086 and the 68000. As
of July 1982, work on the 68000 had not really
started, for the reason that CB-80 is written in
PL/M and Digital Research was still shopping
for a PL/M compiler for the 68000. (I wonder if
they checked with Lifeboat?)

°[may have overstated the case against fixed
string allocation schemes a bit here. Fixed allo-
cation schemes gobble memory in the same
wasteful way that random access files gobble
disk space. If the string length is uniform and
predictable, and all of the strings will fit into
memory at one time while still leaving a rea-
sonable amount of work space, a fixed alloca-
tion method works well. Fixed allocation typi-
cally reserves space in the declaration block.
Dynamic allocation allocates space only as
needed during the runtime sequence. Airline
overbooking is an example of dynamic alloca-
tion in action. It usually works, but also carries
the seeds of failure with it.

Editorial (continued from page 2)
day to point out that The Software
Magazine should provide more of a
forum for entry level articles, re-
views, etc. to provide an opportunity
for those now entering the micro-
computer realm to learn quickly the
buzz words, basic concepts, etc.
Kathy, an extremely competent sys-
tems analyst, has recently made the
decision to extend her expertise to in-
clude micros. We've asked her to con-
sider writing a monthly column for
The Software Magazine targeted at
specifically this area. She'll cover a
wide range of subjects with a view to-
wards providing insight to those
who have been in search of an “entry
point” into this fascinating field.

The Software Magazine has as a fun-
damental element of its charter an
obligation to see to it that the reader-
ship is provided with comprehen-
sive treatment of all aspects of the
microcomputer software field. With
Kathy’s help we'll continue to meet
that obligation and insure that the
light at the end of the tunnel isn’t a
train.

Meet The First Program Generator That Really Works

Want to sidestep the tedium of coding and debugging hundreds of lines of BASIC? Want to compose sophisticated
BASIC programs faster—up to 20 times faster?

Sure you do. So it’s time you met The Programmer’s Apprentice.

Quite simply, it is THE program development tool. For professionals and novices alike. It lets you generate easy-to-
follow, fully debugged, and commented application programs in MBASIC™ or BASIC Compiler™. And here are

some reasons it’s so popular.

%*Flexibility. You can create or modify programs to
code to your own specifications, link programs to
create entire menu-driven application systems for
use with SB-80™ or other CP/M®80-compatible
DOS, with either floppies or hard disks.

¥ Convenience. It’s entirely visual: what you see on
the screen is what you get on paper.

Y Ease-of-Use. You are guided by prompts through
field definitions that, once set, are automatically
converted into an MBASIC™ or BASIC Compiler™
source-code program.

Make your programming life a lot easier—
with a little wizard called The Programmer’s Apprentice

For more information about The Programmer’s Apprentice or 200 + other 8- and 16-bit
programs for popular, business, professional, or p ing uses, contact Lifeboat:
1651 Third Ave., NY., NY. 10028. Tel.: (212) 860-0300. TWX: 710-581-2524 (LBSOFT
NYK). Telex: 640693 (LBSOFT NYK).

Lifelines/The Software Magazine, Volume III, Number 10

SB-80, TM Lifeboat Asso.; Lifelines, The Software Magazine, TM Lifelines Pub.

¥ Comprehensiveness. Also included are the Micro
B +® Record Retrieval System, a business-system
sample applications utility, and a customer mailing
list 1_{With a mail-merge interface optionally
available).

Y Endorsements. And we’re not the only
ones who think it's terrific. InfoWorld
recently rated it “Excellent” in perfor-
mance, ease of use, and error-handling.
And Lifelines™/The Software
Magazine™ also raved oyer it.

Corp.; The Programmer's Apprentice, TM The Software Grp; MBASIC, BASIC
Compiler, TM Microsoft, Inc.; CP/M, reg. TM Digital Res. Inc.; Micro B+, reg. TM
Faircom.

Copyright ©1983, by Lifeboat.

Feature

Where Am I? When Did I Get Here?

High-level languages allow quick development of read-
able programs, but they are often too slow for input/out-
put or bit manipulation. Programmers therefore “graft”
machine-language routines for the time-critical portions
of their high-level code. Since it is a hassle to figure out
just where such a routine will reside in memory, it helps if
such subroutines are location-independent and can fig-
ure out where they end up being put. This article explains
how to make a subroutine answer the question ‘Where am
I?”, fetching the system date and time while doing so.

There is a sixteen-bit register (counter) that tells the
8080/Z80 microprocessor where to look in memory for the
next computer instruction. This is called the Program
Counter (PC). Another sixteen-bit register points to the
memory location used by the microprocessor for storing
information. The stored data is rather like a stack of dishes
in that the last dish placed on the stack is the first dish you
take off the stack. This is called ‘Last In, First Out” (LIFO)
buffer management, and the top of the memory stack is
pointed to by the Stack Pointer (SP). The “PUSH” instruc-
tion copies 16 bits of register information onto the top of
the stack while “POP” removes it into a 16-bit register. A
special-purpose instruction exchanges the information at
the top of the stack with the contents of the memory-ad-
dress register (HL); this instruction is “XTHL".

When the microprocessor performs a “CALL’ instruc-
tion, it saves the current Program Counter value in the
memory specified by the Stack Pointer, modifies the Stack
Pointer to indicate the next memory slot within the stack
area (PUSH PC), and then sets the Program Counter to
point to the memory address of the “called” routine.

Once a subroutine has been called and its own processing
completed, control is returned to the logic that invoked
the subroutine. The “return” instruction (RET) loads the
Program Counter with the value in memory pointed to by
the Stack Pointer and then modifies the Stack Pointer to
the next earlier memory slot within the stack area (POP
Py

Two other ways of loading the Program Counter with an
address are by setting it equal to a value with the “jump”
command (JMP hhhh), and by copying the contents of the
memory-address register HL into it (PCHL).

The sixteen-bit memory-address register pair (HL) can be
loaded directly from a designated memory location
(LHLD), or immediately from the extended value within
the instruction itself (LXI). A double-add (DAD) performs
16-bit addition to the memory address (HL), using the
current contents of a register pair (B,D,H,SP).

Using the computer instructions just discussed, we are
able to write a routine that determines where in memory it
resides. The following 8080 assembly code returns its own
location in the HL register pair:

10

Steven Fisher

FINDME: LHLD 0100H ; get transient program start code

PUSH H ; put it on the stack for later
LXI" “SHIOE9FIH., ; LH="POP H!PGEL’
SHLD 0100H ; puttemporaryroutine in memory
CALL 0100H ; find out where next address is
RTRN: XTHL ; put this addr on stack, get old
SHLD 0100H ; restore program start code
POP H ; HL points to RTRN address
LXI DO0009H ; distance from RTRN to HERE
DAD D ; HL now points to HERE
HERE: ; put your code here

The hexadecimal byte-values of the logic are:
2AH,00H,01H,0E5H, 21H,0E1H,0E9H, 22H,00H,01H,0CDH
00H,01H,0E3H,22H,00H,01H,0E1H,11H,09H,00H,19H

For those BASIC programmers, here it is in decimal:
42,0,1,229,33,225,233,34,0,1,205
0,1,227,34,0,1,225,17,9,0,25

Now that we have a routine that can find out where it is in
memory, we can ask the system “What time is it?”. Digital
Research’s MP/M operating system will fill a specified
memory area with the date and time when you put a deci-
mal 155 into register C prior to “calling” memory location
5. The date-time area is structured such that first there is a
sixteen-bit binary number representing how many days
have elapsed since December 31, 1977 (yes, Virginia, it is
tacky). Next are three binary-coded-decimal (BCD) bytes
for the hour, minute, and second using 24-hour notation
(one PM is hour 13). The register pair DE (D) is used to
point to the date-time area.

The following code immediately follows the label “HERE”
in the preceeding code:

MVI C,9BH ; function code to get date/time

EXTE D,000AH ; distance from HERE to DATE

DAD D ; HL now points to DATE

XCHG ; exchange HL with DE

JMP 0005H ; system returns to calling program
DATE: ; system uses the following areas

DW 0001H ; 16-bit offset from 12/31/77

DB 23H ; BCD hours

DB 59H ; BCD minutes

DB 00H ; BCD seconds

The hexadecimal values for the preceeding are:
0EH,9BH,11H,0AH,00H,19H,0EBH,0C3H,05H,00H,01H,00H,23H,
59H,00H

The decimal equivalent bytes:
14,155,17,10,0,25,235,195,5,0,1,0,35,89,0

If your program contains a string of bytes that reflect the
values presented here, you would execute the string as an
assembler subroutine and then extract the data from the
last five bytes of the string. Gordon Eubank’s CBASIC
would do it thus:

Lifelines/TheSoftware Magazine, March 1983

getdate$ =\

chr$(42) + chr$(0) + chr$(1) +\

chr$(229) + \

chr$(33) + chr$(225) + chr$(233) + \

chr$(34) + chr$(0) + chr$(1) +\

chr$(205) + chr$(0) + chr$(l) +\

chr$(227) + \

chr$(34) + chr$(0) + chr$(1) +\

chr$(225) + \

chr$(17) + chr$(9) + chr$(0) +\

chr$(25) + \

chr$(14) + chr$(155) + \

chr$(17) + chr$(10) + chr$(0) +\

chr$(25) +\

chr$(235) + \

chr$(195) + chr$(5) + chr$(0) +\

chr$(1) + chr$(0) + chr$(35) + chr$(89) + chr$(0)
datertn% = sadd(getdate$) rem--- point to string

datertn% = datertn% + 1 rem--- skip string length byte

rem--- if CB80, previous line is “datertn% = datertn% + 2"

call datertn% rem--- run assembler routine

datertn% = datertn% + 32 rem--- least significant date
byte

dayoffset% = peek(datertn%)

datertn% = datertn% + 1 rem--- most significant date
byte

dayoffset% = dayoffset% + (256 * peek(datertn%))

year% = 1978

while dayoffset% > 1461 rem--- count down four years

year% = year% + 4
dayoffset% = dayoffset% - 1461
wend
if dayoffset% > 365 then \
year% = year% + 1:\
dayoffset% = dayoffset% - 365
if dayoffset% > 365 then \
year% = year% + 1:\
dayoffset% = dayoffset% - 365
if dayoffset% > 366 then \
year% = year% + 1:\
dayoffset% = dayoffset% - 366

leapyear% = (0 = year%and 3) rem---0or-1
rem--- jul-to-cal algorithm by Steven Fisher CDP
if dayoffset% > (59 + (1 and leapyear%)) then \
month% =\
int%(float(dayoffset% + 32)/30.57) \
else \
month% = 2 + (dayoffset% <= 31)
day% = dayoffset% - int%((30.57 * float(month%)) - 30.0 - \
((2 + leapyear%) and (month% > 2)))
datertn% = datertn% + 1
hour% =\
(0fh and peek(datertn%)) + \
(10 * (peek(datertn%)/16))
if hour% >= 12 then \
hour% = hour% -12:\
ampm$ = “PM”\
else \
ampm$ = “AM”
if hour% = 0 then \
hour% = 12
datertn% = datertn% + 1
minute% =\
(0fh and peek(datertn%)) + \
(10 * (peek(datertn%)/16))
datertn% = datertn% + 1
second% =\
(0fh and peek(datertn%)) + \
(10 * (peek(datertn%)/16))
day$ = right$(“00” + right$(str$(day%),2),2)
year$ = right$(str$(year%),2)
minute$ = right$(“00” + right$(str(minute%),2),2)
second$ = right$('00” + right$(str$(second%),2),2)
print using “##\/&\/& ##:&:& &'; \
month%, day$, year$, hour%, minute$, second$, ampm$

Equivalent functions exist in other BASIC dialects.
CBASIC had BCD math and structured code before
MBASIC, and Digital Research no longer charges run-
time license fees for CB80, so I have never bothered to
become familiar with MicroSoft’s version. You'll have to
do MBASIC on yourown. |H

JUST A MINGTE
LHAVE o Go

»)LARRY,
YELLA&T LANA, .

Lifelines/The Software Magazine, Volume III, Number 10

12

MicroMoneymaker’s Forum

Charles E. Sherman

Dealing With CP/M’s Directory Bottleneck

Quite often your job as a consultant
is to get the right hardware and soft-
ware set up and working to suit your
client’s needs. There’s a wide range of
high-powered, highly sophisticated
products to choose from. Lots of mi-
crocomputer hardware is powerful,
professional, and reliable, and the
CP/M family of off-the-shelf software
offers programs of amazing power
and sophistication. Hard disks and
high-density floppies permit the
convenient storage of hundreds or
thousands of files. Yet for all the flash
and dazzle, for all the capability and
power, your client’s hundreds or
thousands of files must still be ma-
nipulated in a CP/M directory and fil-
ing system that hasn’t changed much
since micros were strictly for pio-
neers and hobbyists.

This situation reminds me of Gahan
Wilson's cartoon of a giant aircraft
factory where jet fighters are being
turned out by the hundreds. High up
in the rafters is a tiny, dark room
where a wrinkled little old lady sits
bent over and squinting through her
rimless spectacles as she laboriously
sews buttons on seat cushions by
hand. Two anxious looking execu-
tives are hovering over her shoulder,
and one says something like, “You're
holding us up again, Mom. Can’t you
sew any faster?’

Over a period of time, your typical
client will have to anticipate that
hundreds of files, at least, will be
made and stored by various users,
maybe all on one hard disk. Some-
where, way down the line, the client
or the employees are going to have to
root through screens full of file-
names, all reading something like
“PURCHMEM.D12,” and figure how
that’s related to or different from
“MEMOGRP.RPT” Or maybe Andy
has quit in a snit and someone has to
figure out what’s where in that box of
disks on his desk. And, say, can any-
one remember the filename for that
prospectus Anne made up last year?
And now that our supplier is acting
up, we've got to find that one letter
where we specified quality and
terms - it's somewhere between
SPPLIER3.LTR and SPLIER27.LTR.

You can probably make up even bet-
ter scenarios, but as a consultant you
also have to solve such problems. It
is, or should be, part of your job to
recommend programs and proce-
dures for the computer work flow.
How will your clients identify, store,
sort, and retrieve all the files their
various users accumulate over the
years? How will they identify the
files which can be eliminated in order
to liberate disk space? How will they
identify the few files among many
which have been modified and
which therefore need to be backed
up? And so forth.

For some clients and users the direc-
tory and file handling bottleneck un-
der CP/M can become acute, yet the
available CP/M software solutions
have been something between non-
existent and fragmentary. Standing
over there gloating and rubbing their
hands are the purveyors of dedicated
systems like Lanier and CPT which
offer effective directories with key-
word descriptions for each file and
multiple sorts. More and more, it is
only their good directories and ela-
borate support services which distin-
guish the dedicated systems from the
micros. Vector Graphic’s word pro-
cessor, Memorite, also has an excel-
lent directory. In the CP/M family,
the word processors Benchmark and
Superwriter have enhanced direc-
tory functions. There are a few direc-
tory aids in CPMUG, but none which
I would put into the average client’s
business environment. In 1981, Ad-
vanced Micro Techniques of Foster
City, CA, released an elaborate Li-
brary Data Base filing system called
MicroLIB which is very powerful, but
which requires the user to manually
check files into and out of the library.
It has some powerful features which
we'll go into later, but itisn't what I've
always wanted because it isn't
anything like automatic.

For a long time I have been trying to
nag some programmer friends into
writing a CP/M directory and file-
handling program which would sa-
tisfy my fantasies. I wanted it to over-
lay the CP/M operating system so it
would work automatically. When-

ever a file is created, the program
would query if you wish to add ad-
ditional directory information, and if
so, it would put up a form into which
you enter a key-word description. It
should automatically enter the date if
you have a clock, or take it manually
if you do not. You should be able to
search and sort through files by any
combination of known information,
including key words, date, user, and
wildcards. Well, my team waited too
long, and someone else has finally
released a program which does all
that and much more. Last fall Micro-
Fusion of La Jolla, CA released
Trakmaster, priced at $150. Since this
is the first commercial program of its
kind that I've been able to find, I
thought you should know about it.

Trakmaster

When you first install the 26K Trak-
master (hereafter called TM) on any
disk, you assign that disk an ID name
and description, and TM creates its
own directory file on that disk. You
can modify CP/M to make TM auto-
start, otherwise you will have to type
TM after each powerup or cold boot
to get it going. On each fresh startup,
TM queries for the user’s name and
the date. It will recall whatever name
and date you give it until it is
changed, so if neither item needs
changing, you can pass over the
query and go back to CP/M. Any re-
dundant appearances of this inter-
ruption are little bother, as it only
happens when you cold boot.

The TM directory keeps a range of in-
formation on each file which in-
cludes the disk name, user number,
CP/M filename, application (8 char-
acters), key words description (32
characters), user name, date created,
last update, CP/M flags, and file size.
This information can be sent to
screen or printer, and can be dis-
played either in full, as in Figure 1, or
partially, as in Figure 2. When the full
list is sent to screen or printed at less
than 132 characters, each line of the
full display will occupy two lines.

All information on each file is auto-
matically assigned by TM except for

Lifelines/TheSoftware Magazine, March 1983

the application and description,
which it asks the user to supply.
When TM is on, it automatically
monitors the CP/M directory, and
whenever you save a file it will query
you for two items of information
about the file: application and de-
scription. If that information has al-
ready been entered, you can waive
through the query and go back to
CP/M.

You can search the TM directory
either from TM or from CP/M. TM al-
lows you to search along the normal
CP/M naming and wildcard conven-
tions, and also to search according to
parameters in any of the file informa-
tion categories illustrated in Figure 1.
For example, you can ask for a dis-
play of all files created by John in an
accounting application between
10/01/79 and 09/30/82 which are in
reference to the Adams company,
and so forth.

TM will keep a master file of all your
TM directories, thus enabling you to
have rapid access to all files even in
very large disk libraries. You just
copy all disk directories into a master
directory file, and update either rou-
tinely or when reasonable to do so.
TM will search all files in the master
directory in just the same way as de-
scribed above for single directory
searches.

The directory functions are benefit
enough, but Trakmaster also does
wonderful things for your copy and
backup operations. You can direct
TM to copy files according to param-
eters set in any of the file information
categories, just in the same way as
described for directory searches.
Thus, you can copy off a hard disk
just those files made by Sue between
any two dates about the Zenith Proj-
ect. The powerful copy features be-
come especially useful and impor-
tant when backing up files from a
crowded disk. You needn't take the
time to backup all files every time,
but instead you can merely instruct
TM to backup those files which have
been updated since the last backup.

Trakmaster is a magnificent step in the
right direction, and as far as I know, it
is the only commercially available
program of its kind. Trakmaster’s de-
sign goals are clever and quite well
thought out, but the implementation
is only ordinary. It does everything it

sets out to do, but not necessarily as
smoothly or quickly as one would
wish. It should, but does not, have
provisions for taking the date from a
computer clock. The screen and
menu operations are not bad, but
also not sophisticated. The major
weakness is that TM’s disk opera-
tions slow things down considerably
whenever a file is saved. Using my
super-fast Godbout/Compupro Disk
1 controller, it takes approximately 34
seconds to wind down out of Magic
Wand when no new file information
is added. This is about 30 seconds
longer than it takes without TM but-
ting in and that’s too much. It will be
even worse with the average disk
controller. Because TM queries every
save for application and description
information, the 30 or more seconds
of slow-down becomes annoying,
and especially so when you have no
new information to add. TM takes
just as long to wind down when you
have no news as when you put new
information in. My final critical re-
mark is for the documentation,
which is merely adequate. Like the
program, it does what needs doing,
but that’s all. Fortunately, it is just
good enough to pass muster.

In spite of my criticisms, I think Trak-
master is a cleverly conceived and
very much needed program. It could
use some polishing, and I suspect
that it will get it if the boss ever gets
the time. Apart from being slow on
the file saving operation, TM does do
everything it sets out to accomplish,
and that’s a lot! Until something bet-
ter comes along I have to recommend
this one strongly. It is especially ap-
propriate for hard disk systems, and
it may be just the thing for those of
your clients, whatever the size of
their media, who will need to store
and manipulate numerous files.

I get the impression that Microfusion
is a one-man enterprise. I gather that
the one man, who seems sincere and
dedicated, is finding it to be a bigger
job than he had ever anticipated to
get his baby to market. It may be that
his entrepreneurial experiences will
be worth hearing about, if he'd care
to share them, so I shall be checking
it out on my annual Xmas trip South.

MicroLIB

Just a brief note about this one.

Lifelines/The Software Magazine, Volume III, Number 10

MicroLIB is an elaborate directory
data base which has some pass-word
and encryption features which may
be extremely useful in certain spe-
cialized applications. Files must be
manually entered into the library,
and they must also be checked out
and replaced when they are worked
upon. The MPUT command is a util-
ity which puts files into the library,
and the MGET command checks
them out. To me, this means that the
program is well suited for very high
volume applications, where library
maintenance can be routinized and
afforded. Such large scale operations
might very well want password pro-
tection for certain files, and even en-
cryption for very private ones. Raish
Enterprises, the authors of Quickey
(see the December, 1982 issue), are
also consultants to high volume
users and they find MicroLIB to be
very useful. MicroLIB is $295.

More Returns From The
Readers

Trends detected in the early returns
from readers (reported in the No-
vember, 1982 issue) have held up all
along. Most readers are consultants
of one kind or another, and only a
few are entrepreneurs, although
quite a lot more would like to be. A
few readers requested reviews of
business and financial software, and
a couple wanted to be told how to get
and stay rich. However, the majority
of those who wrote said they wanted
this column to focus on issues and re-
views of software relevant to consul-
tants and the electronic cottage in-
dustries. So be it.

Previews

Time for a trip to the hot ideas de-
partment. You folks haven't told me
enough about your dreams, so I'll
just have to tell you about mine. Trak-
master already ran all over one of
them, and Fancy Font has dented the
decorative features of another, but I
still have a few virgin ideas left. If that
gets boring, there are more program
reviews in the offing. If things get
desperate, I may fall back on my an-
cient legal lore and deliver some sage
and practical advice about starting
up a business.

(continued on next page)
13

14

on screen or 80 col. printer, each entry takes two lines

Figure 1: Trakmaster full Directory Display

Directory
Description

Account Payable command file
Account payable form file

Ltr Example for Mailing
Article memory file

Article command file

BASIC Test program “Bug”
Autodial Pgm source

CIR Union Ads

Dungeon & Dragons game
Dungeon & Dragons Menu
Wordproc example text
Invoice Horral lost equipment
Ltr to LUBT re Stop Maccibees
Lee Equipment Invoice

Letter to Mother re kittens
Letter to Mom re wedding
Monopoly game

Packman game (all terminals)
Ltr to Evan re Brown Account
Ltr To REBA re B&B Stock
C/R Raccount source Pgr

Set margin on printer Pgm
FM Manual Words to define

Thr 10-21-82 Page 1

Username Create Update Flags

Bill 10-21-82 10-21-82 R/W DIR
Bill 10-21-82 10-21-82 R/W DIR
Bill 08-19-82 10-21-82 R/WDIR
Bill 10-21-82 10-21-82 R/W DIR
Bill 10-21-82 10-21-82 R/W DIR
Bill 08-24-82 10-21-82 R/WDIR
Bill 09-28-82 10-21-82 R/WDIR
Bill 10-19-82 10-21-82 R/WDIR
ALL 08-23-82 10-21-82 R/WDIR
ALL 08-23-82 10-21-82 R/WDIR
ALL 08-01-82 10-21-82 R/WDIR
Bill 08-01-82 10-21-82 R/WDIR
Bill 08-11-82 10-21-82 R/WDIR
Bill 08-01-82 10-21-82 R/WDIR
Bill 08-15-82 10-21-82 R/WDIR
Bill 10-01-82 10-21-82 R/WDIR
PETER 08-22-82 10-21-82 R/WDIR
ALL 08-23-82 10-21-82 R/WDIR
Bill 08-01-82 10-21-82 R/WDIR
Bill 08-23-82 10-21-82 R/WDIR
Bill 08-12-82 10-21-82 R/WDIR
ALL 08-23-82 10-21-82 R/WDIR
Bill 08-18-82 10-21-82 R/WDIR

Figure 2: Trakmaster Partial Directory Display

Size

8K
4K
4K
4K
16K
4K
8K
4K
28K
4K
16K
4K
4K
4K
16K
4K
28K
20K
4K
4K
20K
4K
8K

Thr 10-21-82 Page 1

MicroFusion
Diskname Un D: Filename Ext Application
HARDDISK 7 B:ACCTPABL CMD Dbase
HARDDISK 7 B:ACCTPABL .FRM Dbase
HARDDISK 7 B:ADDRCHG .LTR Wordproc
HARDDISK 7 B:ART .MEM Dbase
HARDDISK 7 B:ARTICLE CMD Dbase
HARDDISK 7 B:BUG .BAS Basic
HARDDISK 7 B:CALL .BAS Basic
HARDDISK 7 B:CR-UNION .ADS Wordproc
HARDDISK 7 B:DND .BAS Basic
HARDDISK 7 B:DNDMENU .BAS Basic
HARDDISK 7 B:EXAMPLE TIXT Wordproc
HARDDISK 7 B:HARRAL NV Invoice
HARDDISK 7 B:INSBANK LTR Wordproc
HARDDISK 7 B:LEE NV Invoice
HARDDISK 7 B:MOM LTR Wordproc
HARDDISK 7 B:MOM2 LTR Wordproc
HARDDISK 7 B:MONOPOLY .BAS Basic
HARDDISK 7 B:PACMAN COM System
HARDDISK 7 B:PINOEVAN .LTR Wordproc
HARDDISK 7 B:REBASTOK .LTR Wordproc
HARDDISK 7 B:RISETWO .BAS Basic
HARDDISK 7 B:SETMAR .BAS Basic
HARDDISK 7 B:TMMANUAL .FRQ Wordproc
MicroFusion Directory
Diskname un D: Filename Ext Application
HARDDISK 7 B: ACCTPABL .CMD Dbase
HARDDISK 7 B: ACCTPABL .FRM Dbase
HARDDISK 7 B: ADDRCHG .LTR Wordproc
HARDDISK 7 B: ART .MEM Dbase
HARDDISK 7 B: ARTICLE CMD Dbase
HARDDISK 7 B: BUG .BAS Basic
HARDDISK 7 B: CALL .BAS Basic
HARDDISK 7 B: CR-UNION .ADS Wordproc
HARDDISK 7 B: DND .BAS Basic
HARDDISK 7 B: DNDMENU .BAS Basic
HARDDISK 7 B: EXAMPLE TIXT Wordproc
HARDDISK 74 B: HARRAL ANV Invoice
HARDDISK 74 B: INSBANK LTR Wordproc
HARDDISK 7 BYEEE ANV Invoice
HARDDISK 7 B: MOM .LTR Wordproc
HARDDISK 7 B: MOM2 LTR Wordproc
HARDDISK 7 B: MONOPOLY .BAS Basic
HARDDISK 7 B: PACMAN COM System
HARDDISK 7 B: PINOEVAN .LTR Wordproc
HARDDISK 7 B: REBASTOK .LTR Wordproc
HARDDISK 7 B: RISETWO .BAS Basic
HARDDISK 7 B: SETMAR .BAS Basic
HARDDISK 7 B: TMMANUAL .FRQ

Wordproc

Description

Account Payable command file

Account payable form file

Ltr Example for Mailing
Article memory file

Article command file

BASIC Test program “Bug”
Autodial Pgm source

C/R Union Ads

Dungeon & Dragons game
Dungeon & Dragons Menu
Wordproc example text
Invoice Horral lost equipment
Ltr to LJBT re Stop Maccibees
Lee Equipment Invoice

Letter to Mother re kittens
Letter to Mom re wedding
Monopoly game

Packman game (all terminals)
Ltr to Evan re Brown Account
Ltr To REBA re B&B Stock
C/R Raccount source Pgr
Set margin on printer Pgm
FM Manual Words to define

Lifelines/TheSoftware Magazine, March 1983

Feature

The Z80 Instruction Set —
Shakers & Movers

This month [am going to concentrate on a most useful
group of instructions - the Load group. Various learned
studies have calculated that load, or move, instructions
account for fifty percent of all of the instructions used in a
typical assembly program. It seems that programmers
spend a lot of time moving information into a location
where it can be manipulated.

In the following discussion, the term register refers exclu-
sively to one of the eight bit registers (A,B,C,D,E,H, and
L). The term register pair refers to one of the sixteen bit
registers (BC, DE, and HL). The instruction stream is the
flow of information that comes into the processor via the
address in the program counter (PC). In the normal pro-
gram flow bytes are read one at a time, and the PC is incre-
mented, by one, after each instruction fetch. (Obviously
jumps and calls alter this sequential flow, but we are not
going to discuss them this month).

The Zilog Load mnemonic (LD) corresponds to a variety
of Intel mnemonics:
Zilog
Load registers or memory
Load immediate data
Load accumulator, direct
Load accumulator, indirect
Load reg. pair, indirect
Load index reg. (IX or IY)
Load SP from HL, IX or IY

Intel

Move (MOV) reg. or memory
Move immediate (MVI, LXI)
LDA and STA

LDAX, STAX

LHLD, SHLD (note HL only)
- no equivalent -

SPHI:

This section will also discuss exchange operations, push
and pop, and the block move instructions. Although
these are not officially in the load group, they do transfer
data from one location to another. The relevant Z80 mne-
monics and their Intel counterparts are:

Zilog Intel
EX (exchange) - 4 flavors ~ XCHG and XTHL
PUSH reg. pair, IX, IY PUSH reg. pair
POP reg. pair, IX, IY POP reg. pair

Block moves - no equivalent -

As I noted in a previous section, Zilog uses one mne-
monic, LD, for all normal load instructions. (Due to Intel’s
existing opcode map, new Z80 instructions, like block
move and the index register instructions, require two byte
opcodes. Unique mnemonics emphasize this change in
the opcode template.) The addressing mode (immediate,
indirect, etc.) is specified by the operand field. The Z80
load instruction has more addressing modes than the
8080 move instruction. Additionally, some of the 8080’s
extended (16 bit) operations, limited to the HL register
pair, are expanded to include DE and BC as valid oper-
ands. For example, you can now load the register pairs BC
and DE from memory. In Intel mnemonics this capability
would be expressed as LBCD (Load BC Double) or SDED
(Store DE Double).

[am not going to go into the details of the Intel compatible

Lifelines/The Software Magazine, Volume III, Number 10

Kim West DeWindt

instructions. By now, you all know that MVI A,55 puts the
value 55 into the A register. I will list the Zilog opcode
mnemonics, what they cause the processor to do, and an
example of the Intel equivalent. That should keep every-
thing nice and neat, providing a simple cross reference be-
tween Intel and Zilog listings. Instructions that are unique
to the Z80, and that provide improvements over the 8080
abilities, will be explained more carefully. Coding exam-
ples, for these and other Z80 instructions, will appear in a
later section of this tutorial.

The simplest load instructions move data in and amongst
the internal eight bit registers. No outside addresses are
generated; an internal three bit code selects two of the
eight registers. Data is moved from the source register into
the destination register. At the end of the instruction cy-
cle, the contents of the two registers are equal. The con-
tents of the destination register are destroyed, the source
register is unchanged. The Zilog expression for this is:

LD A,B ;Load A with the contents of B

Intel’s version:
MOV A,B

Note that the use of the word load to describe this
operation allows a written description of the instruction to
list the registers in the same order in which they appear in
the operand field.

;:Move the contents of B into A

The only double register addressing that exists allows the
stack pointer to be loaded from HL, or one of the index
registers. The 8080 can load the stack pointer only from
HL (SPHL). Zilog shows this as follows:

LD "= SEHL ;Load the stack pointer with the

contents of HL

Zilog has two special forms of the register load. One
transfers data between the accumulator and the refresh
register (counter). The other allows the programmer to
read from and write to the Interrupt vector register, also
via the accumulator. The 8080 does not have these special
purpose registers, so it does not have the corresponding
opcodes. In Z80 assembler code they appear as follows:

LD Al ;Load A with the contents of the
Interrupt vector
LD RA ;Load the refresh register (7 bits)

with the contents of A

Another simple data transfer moves a user-specified
value into the addressed register (known as the move
immediate by Intel buffs). One byte of data, nestled in the
instruction stream, is written into the specified eight bit
register. There are no internal machinations required to
generate a data pointer. After reading the opcode, the
program counter (PC) is incremented so that it now points
to the next location in memory, the implanted data.
Another memory read cycle fetches this data, and it is

(continued on next page)

relocated into a register. The data is not changed in its
memory location, the previous contents of the register are
lost. The proper expression for this instruction is:

LD D,23 ;Load D with the value 23 (decimal)

This instruction can also be used to load any one of the
Z80's register pairs, the stack pointer (SP), or either one of
the index registers (It is up to the user to initialize, i.e.
load, the index registers before using them. Their content
is unknown after reset.):

LD BC,3556 ;Load B with 35, and C with 56

LD SPOFFFFH ;Initialize the stack pointer to the

top of memory

In Intel mnemonics, the eight bit version of this
instruction is:

MVI D,23 ;Move the value 23 (located in
memory, immediately after the

opcode) into D
Their mnemonic for the sixteen bit version is different:

MXI BC,3556 ;Move the extended (16 bit) value
3556 into the register pair BC

Another simple form of addressing, called direct
addressing, allows you to implant a fixed address in the
instruction stream. Two bytes of data provide the sixteen
address bits of a source or destination in memory. With
the Z80, a direct address in the operand field can be paired
with the accumulator, any of the normal register pairs, the
stack pointer, or the index registers.The 8080 is limited to
using the accumlulator, HL, and SP. For a Z80 example:

LD (4955),A ;Load location 4955 with the
contents of the accumulator

Normally, (4955) would not appear in a program listing.
Instead, you would have a label (ex: Pferd) which is the
label at address 4995. The assembler would fill in the
appropriate numbers and the instruction would look like:

LD Pferd, A

The Store A and Load A instructions are the Intel
equivalents:

LDAX B ;The X implies the use of the BC
register as a pointer, rather than the
solo B reg.

STAX Pferd ;Store A's contents at Pferd

Zilog's sixteen bit version of this instruction type looks
very similar to their eight bit version:

LD BC,(1248) ;Load BC with two bytes, starting at
location 1248
LD Pferd, DE ;Load memory location Pferd, with

the sixteen bits in DE

The 8080 can only use direct addressing with the register
pair HL. These are the familiar load and store double com-
mands:

LHLD Pferd
SHLD Pferd

;Load HL from Pferd
;Store HLs contents at Pferd

Next in line is indirect addressing. This variation uses the
contents of the HL register pair as a pointer into memory.
The pointer can be directed at either the source or the des-
tination of the load operation. The other half of the oper-
and must be one of the eight bit registers, like this:

LD A,(HL) ;Load A with a value located in
memory. The register pair HL con-
tains the proper address.

LD (HL),C ;Load the addressed location (HL

contains the address) with the con-
tents of C

Asin all load instructions, the contents of the source loca-
tion (memory or register) are unchanged; the pre-instruc-
tion contents of the destination are overwritten. HL con-
tains a complete sixteen bit address; no additional calcula-
tion is necessary before the address is shipped out to the
address pins.

In the Intel instruction set this type of move operation is
called a register to memory transfer, rather than register
indirect addressing. The letter M replaces the Zilog nota-
tion (HL). The net result is that M stands for a the memory
location pointed to by the contents of HL:

MOV AM

or: MOV MC ;Just don't forget to put the proper

address into HL.

A subset of this type of operation requires that the
accumulator (A) be either the source or the operand. If
this is the case, the address can be contained in HL, BC, or
DE. This version appears as follows:

LD A,(BC)
LD (DE)A

;The source address is in BC

;Load the destination (address in
DE) with the contents of A

A more complicated form of address generation, indexed
addressing, is unique to the Z80. (Actually, indexed
addressing is unique only in this comparison of the Z80
and 8080 instruction sets. Almost all newer processors
provide some form of indexed addressing.) In this mode,
the index register (IX or IY) contains a base address. An
eight bit offset is added to this base, the composite answer
is a pointer to the source or destination. Any eight bit
register can be the other half of the operand. The eight bit
offset is data that is included in the instruction stream.
Note that because it is necessary to fetch the offset and
calculate the address, this type of instruction takes a little
bit longer to process. (19 T states instead of the 9 T states
required for the more mundane indirect addressing. A T
state is one clock cycle - for the 4 megahertz Z80A, one T
state is 250 nanoseconds long.) Also note that an offset is
REQUIRED, even if the offset is 0. This is a two byte
opcode, and there is no 8080 corrollary. The assembler
format is:

ED B,(IX+3) ;Add 3 to the contents of IX and use
that value as an address pointer.
Load B with the value at that loca-
tion.

LD (IY+0),88 ;Load the memory location, ad-
dressed by IY, with 88 - the source
could have been one of the eight

registers

Lifelines/TheSoftware Magazine, March 1983

Leaving the index registers for a moment, let us talk about
swapping information. The exchange instructions allow
the programmer to transfer information between registers
without destroying the contents of either register. Two
register pairs appear in the operand field, each can be con-
sidered a source and a destination. The Z80 uses special
exchange instructions to get information into and out of
the prime registers. This is the only way to communicate
with these prime registers. A single command swaps the
contents of all of the prime register pairs with the contents
of the normal register pairs - very handy in interrupt han-
dling routines. Later in this tutorial, I will give an example
of a simple interrupt handling technique (context switch-
ing) which uses this instruction. The Z80 also has the 8080
style exchange instruction which swaps the DE and HL
registers pairs. That mnemonic is:

EX DE,HL ;swaps the contents of HL with the

contents of DE
This is the same function as Intel’s:
XCHG

The two exhange functions which involve the prime regis-
ters are:

EX AEAF ;swap the contents of the prime flag
and A registers with the normal A
and F regs.

EXX ;exchange BC, DE, and HL with

BC, DE, and, HL

Although the user can not manipulate the prime registers
directly, one state of the Z80 operating environment can
be swiftly saved. No need to push registers on and off the
stack, trying to remember which byte goes into which reg-
ister.

The exchange instruction can also be used with a limited
type of indirect addressing. The top of the stack, pointed
to by SP, can be exchanged with the contents of HL, IX, or
IY. Swapping the TOS (Top Of Stack) with HL is Intel’s:

SPHE ;exchange TOS with HL
Zilog mnemonics for that operation look like this:
EX (SP),HL ;note that the notation (SP) is con-

sistent with other uses of indirect
addressing.

Or, to load one of the index registers, just modify the operand
field to address the appropriate location:

EX (SP)IX

NOTE: It should be apparent that Zilog has made a con-
certed effort to standardize their opcodes and addressing
notation. This simplifies the task of a programmer who
has to pick up a listing, recognize the opcode, and then
determine what type of data is being shuffled around,
where, and how it is being addressed.

;1Y is also a valid operand

Transferring data through the stack is another way of get-
ting data where you want it. Nothing fancy here, just the
good old push and pop instructions. The only addition,
evident in the operand field, allows the special index reg-
isters to be popped and pushed - just like everybody else:

PUSH AF ;Push A and F onto the stack

Lifelines/The Software Magazine, Volume III, Number 10

POP IX ;in this sequence, the contents of A
and F would end up in the IX regis-

ter.

Remember that F is the Zilog notation for the flag register.
AF is the equivalent of Intel's PSW (Program Status
Word). Other Zilog operands (for PUSH and POP) are BC,
DE, HL and IY.

Last, and most certainly not least, we come to the block
move instructions. The mnemonic base is LD (this is a
form of the Load command). Letters are added to indicate
the direction of the block move (the pointers are incre-
mented or decremented), and to indicate that the instruc-
tion occurs once, or that it is repeated.

The block move instruction assumes that the register pair
HL points to the start of the block to be moved (the
source). DE must point to the future location of that block
(the destination). BC contains a number equal to the
length of the block that is to be moved.

The letter I indicates that HL and DE are incremented
after each move. HL and DE are decremented if the mne-
monic includes the letter D. BC, which is the count regis-
ter pair, is decremented after every move within the
series. The letter R means that the instruction is per-
formed until BC is equal to zero. Even if the instruction
does not loop, HL and DE are bumped (up or down) and
BC is decremented.

There are four forms of the instructions. They are:

LDI ;Load, moving data from the ad-
dress contained in HL to the ad-
dress in DE. Increment HL and DE,
decrement BC. Do not repeat

LDIR ;Do the same thing as the above in-
struction, then repeat until BC is

equal to zero.

;Load, from (HL) to (DE), but this
decrement HL and DE. Decrement
BC. Do not repeat

LDD

LDDR ;Load, decrement pointers, repeat

until BC is equal to BC.

You can see that it is a very powerful instruction. In addi-
tion to compacting code, it can provide an increase in
speed, depending on the type of operation. Later, in the
coding examples, I will discuss some of the uses for this
instruction.

That about wraps up data movement (excluding Input/
Output). See you next month.

Call For Bug Reports

Help us keep you informed! Lifelines/The Software
Magazine welcomes bug reports from readers. A
product with a documented bug can still be valuable
to the informed user.

We also welcome tips & techniques and will pay you
$50 if we publish yours. Unpublished tips wi].ly onl
be returned if they are accompanied by a self-
addressed envelope.

Feature

CP/M Interfaces
to the Human Being

“I was reading the manual for about fifteen minutes be-
fore I realized that the book was upside-down.” That’s
what my client told me after the first session spent reading
the Digital Research manuals for CP/M. I had heard it be-
fore but not in quite such a picturesque way. One of the
constant problems accruing to dealers providing CP/M to
their customers has been the difficulty of understanding
the usage of the CP/M built-in commands as well as the
transient programs that are supplied by Digital Research.
This is not to denigrate the operating system itself, but,
these manuals were not written for the novice.

This problem has forced customers to call us, at all times of
the day and night, to find out whether to “PIP a:=b:...."
or “PIP B:=A:...."; “How do I rename my data file ?” ;
“What do I back up when I want to back up.....and how ?”
Add the multiplicity of questions of your choice and you
will appreciate the amount of time taken on the phone
teaching CP/M. I have, in self-defense, given copies of one
of the books designed to make CP/M more easily under-
stood. However, there has been no way to divorce myself
from those people unable or unwilling to learn from a
book of any kind. Now there is a way ... not only one way
but several ways. They are not alike and none is the com-
plete answer.

Fededededededededededekdekk

Fkkkk

SUPERVYZ comes as machine code with the ability to fill
in a preset menu format. The menu formats can call other
menus or do specific functions designated by the person
setting up the system. The programmer can set up to 5
parameters to be answered by the user. SUPERVYZ then
inserts these parameters into a command line that has
been pre-programmed into the menu module using a for-
mat similar to the CP/M-provided SUBMIT.COM. (See
Fig. 1)

This command line is much more flexible than that pro-
vided by SUBMIT since not only can you insert the
parameters into the CP/M command line but you can run
your transient program from within the SUPERVYZ com-
mand line. An example of a command line:

Bob Kowitt

This line in a menu option by the programmer will:

1) Load the format program to format the disc in the B
drive double density (if your format program takes the
command with this syntax)

2) Answer YES when the format program asks for
verification.

3) Do the formatting

4) Load the system transfer program

5) Answer ‘A’ as the source

6) Answer ‘B’ as the destination

7) Do the transfer

8) Load PIP

9) Copy PIP.COM from A: to B:

10) Run a .SUB file called SYSDISK to copy a list of files
to the new disc.

Epic Software’s Steve Fisher, who wrote SUPERVYZ, has
provided an overlay to the CP/M Console Command
Processor (CCP) which he calls SUPERCCP. To load
SUPERVYZ you type SUPERCCP, which in turn loads
SUPERVYZ and the first menu. As an alternative, when
installing SUPERVYZ you can enable the autoboot
function. With autoboot enabled, the menu comes up
when the system is turned on. Epic has also provided an
excellent series of menus to get you started.

In order to perform some of the functions from within the
SUPERVYZ control line, some addition features were
needed within the CCP.
> comment -displayed on screen but no action
taken. CLR clears the screen
GET loads a specified program into memory
GO runs the loaded program
LOG provides a *C type reset of all discs
UNYZ disconnects SUPERCCP and SUPERVYZ
WAIT requests and waits for a key-press
deactivates 1S and 1Q
reactivates 1S and 1Q.

The additional intrinsic commands allow the following
series of operations, as described in the manual, to back
up a data disc that had been used on the B drive:

A:FORMAT BD{Y||}|A:SYSGEN{A|B||}|PIP B:=A:PIPCOM| @ SYSDISK

@
(2-3)

C)

5)
67)

(8-9)
(10)

Lifelines/TheSoftware Magazine, March 1983

GET BIP (puts PIP into memory but does not
run it)
(displays instruction message)
;Place Source in A:, Blank in B: then press <RETURN>
WAIT (waits for the carriage return)
LOGB: (makes drive B: R’'W)
GOB:=A:**[VO] (does pip of all files)
;Replace program disc in the A: drive (another comment)
WAIT
LOG A: (makes drive A: R/W)

This series of commands will not fit on the command line
of the menu item so it should be placed in a submit file,
with a name of your choice, to be called from the
SUPERVYZ menu.

The on-board help is something that caused me a great
deal of concern in the first version (since updated twice) of
SUPERVYZ I used. It was written in PILOT, a computer
assisted instruction (CAI) language. When a ‘?" was typed
at menu selection time, the screen cleared, the PILOT
interpreter was loaded and the help file for the application
was displayed. The first time I ran it, I thought my
computer had hung up and I ran for the reset button. The
next time, [waited longer and finally after 23 line feeds, I
had my help. This defect has been corrected in the latest
version that, incidentally, also runs under some versions
of MP/M (check before ordering). In this latest version,
not only does the help facility run much faster but the
entire package has been remodeled to run faster.

To create help files for his client, the programmer must
write the help file with his own editor following the rules
of the HELP language supplied by Epic. I was not given a
copy of the new manual so I cannot comment on any
instructions for setting up the help files that may exist
within the manual. The instructions given on the disc,
however, within the supplied help programs, are very
complete. The language permits the programmer to
provide for a help file that can be called at any stage in
SUPERVYZ's operation, whether it is by the end-user or
the programmer setting up the new menus or associated
help files.

Creating menus takes planning. There are only 10 options
plus the help call that are permitted on each menu but
each menu can call other sub-menus so there is really no
limit. An ‘0’ response on a menu will recall the previous
calling menu. During menu creation, not only can a
command line be constructed but you can designate up to
8 files that are required on the disc, and where they must
be, in order to perform the operation. If any of them are
not available to the system at run time, an error message
will be displayed.

I must say that Steve Fisher is constantly revising
SUPERVYZ and the latest version 1.35 that I was sent for
checking is far superior to the original package.

Fekedededekekededeokkkekdekke ke dedek ke ek ek e dededede ke

STOK PILOT is a programming language. It is a superset
of PILOT and will run all programs written in PILOT.
Commands have been added to allow checking of files,
executing of other transient programs, loading and calling
of machine language subroutines, a case switch, direct

Lifelines/The Software Magazine, Volume III, Number 10

port I/O and many more. As an interface to CP/M it is
totally flexible as long as parameters to the called program
can be passed thru the command line but this is a
limitation that, at present, must be realized. It is for this
reason that one cannot do a SYSGEN, for example,
without being aware of the location of the source and
destination of the system being transferred. I mention
this, in particular, since this article deals with interfacing
the novice end-user with CP/M. I do not expect this
person to know such things as the answer to the question:

SOURCE ON?
DESTINATION ON ?

With STOK PILOT, I wrote a file transfer program that
requests separate input of the name and type of the source
file, name and type of the destination file, as well as the
source and destination disc drives. I must offer a
disclaimer here. It is not totally debugged but can be used
as a template for the type of thing that can be done with
STOK PILOT. Asterisks were allowed and error checking
performed at each stage of operation. In addition, at ANY
point, a ‘? displayed a help file explaining the PIP opera-
tion. Admittedly, to the experienced user of CP/M, an
effort far surpassing its result. But to the confused novice
trying to get a system up for the first time, it removes some
of the confusion of house-keeping. (See Fig. 2)

STOK PILOT’s list of commands are impressive when
compared to the subset used in CAI:

A: Accept answer (like INPUT in basic)

ANE: Accept answer no echo: - do not allow dis-
play of input

C: Compute - addition and subtraction only -
allows assignment of values to numeric vari-
ables

CALL: Call assembler program at location 100
HCASE(X): Jump to labeled routine depending on value
of X

CH; Chain another PILOT program

CLRS: Clear screen

COMPILE: Compiles the ASCII program for fast load-
ing and running

CUR: Full cursor positioning control

DEEF: Assign string variables

DL Disable the escape key

DRIVE: Select drive

El Enable the escape key

E: End of a subroutine

END: Go back to CP/M

ESC: Defines the action to be taken upon using
escape key

EXEC: Execute CP/M commands

EXIST: Check disc for existence of specific files

HOLD: With this one, <RETURN> continues and
‘R’ jumps to specifed label

INMAX: Defines the maximum length of string input

allowed

I Jump to alabel

LF: Line feed function such as ‘LF: 10" displays
10 line feeds

LOAD: Load a machine language subroutine with
filetype ‘LOD’ into location 100H.
M: Match - compare input from Accept to these
values
(continued on next page)
19

20

MC: Same but include commas

OUT: Output to I/O port

PR: Print on list device

R: Remark

SAVE: Save the input text variable in memory

B Display text on console

TNR: Display text with no return (useful for input)
U: Use subroutine called by label

USER: Switch to designated user

WAIT: Same as ACCEPT but is timed by preset in-

terval

A very strong feature of the language is that all of the com-
mands presented above may be modified by a conditional
statement. The condition can be an expression, the value
of avariable or the yes or no result of a previous match. For
example, if a previous question had to be answered with
yes or no, the use subroutine command:

U: ‘*routinel

can be modified to
uY:
UN:

This can provide the ability to output to the printer or con-
sole by the following:

*routinel (use routinel if the answer was yes)
*routine2 (use routine? if the answer was no)

(the line numbers are for reference - they do not belong in
the program)

1- *START

2- C@LRS:

3- LF: 10

4- TNR: Do you want this output to the printer?

5- INMAX: 1

6- A:

7- M:Y,N

8- JN:*START

9- M:Y

10- PRY:THIS IS AN EXAMPLE OF PRINTING
WHERE YOU WANT IT TO GO

11- TN:THIS IS AN EXAMPLE OF DISPLAY TO
THE TERMINAL

Line 1: Label for later reference

Line 2: Clear the screen

Line 3: Output 10 line feeds

Line 4: Display question with no carriage return at end

Line5: Allow only 1 character reply

Line 6: Accept answer

Line7: Allow a match of onlyaY or N

Line 8: If there is no match (no Y or N), jump back to
label

Line 9: Try to match with'Y

Line 10: If there was a match with Y, go to list device for

rint

Line 11: pOnly if there was no match, display on console -
leaving off the N in line 11 would have caused a
console display under either condition.

In addition, several special characters are allowed in entry.
The { and } are used in T: lines to turn on and off reverse or
modified video depending on your terminal; and the
caret (<) allows output of any special control characters
you might need to send either to your printer or console.

STOK PILOT may be invoked in three modes: TEST, RUN
or COMPILE. In test mode, the ASCII file is examined and
any errors in syntax are reported. The program is not run.
In compile mode, the compiler reads the line in the ASCII
program that starts with the command COMPILE: and
compiles the program as file type COM. If the ASCII pro-
gram includes a command to load a machine language
LOD type subroutine file, this file will be included in the
compiled program. STOK PILOT reserves a 2K block at
100H for these machine language routines.

Fkdkdddeddodokdkdkkdhhddddddkkkdkdkdkdkdkkkkk

CEF

At first run, I was very disappointed with CP + . However,
this initial disappointment was replaced in a short time
with the realization that I was observing a disaster. It is at
times like these that [would wish every seller and every
user of an 5-100 computer were a reader of Lifelines. We
need impartial evaluation of software to help us select
good from bad, useful from worthless and even good
from better. I would be reluctant to part with $50 much
less the $150 required. It comes with a very nice looking
manual but doesn’'t promise to do very much. What it
does promise to do, it does badly. The various interactions
with CP/M are locked into a program written in the C lan-
guage and not modifiable in any way by either the end-
user or the dealer supplying him.

Only the barest CP/M facilities are utilized by CP+: PIP,
STAT, and the intrinsics DIR, REN,ERA. To run anything
else requires finding the menu item for entering a CP/M
command and knowing what arguments to be passed and
whether the program will accept arguments. One of the
problems of a reviewer is looking at a program from the
point of view of the person buying the software. It would
not be fair to judge CP/M simplifying software from the
point of view of someone thoroughly familiar with the op-
eration of CP/M. We must “stupidify” ourselves and pre-
tend we only know how to turn on the machine and type
the name of a program. Fortunately, (very fortunately), I
do not “stupidify” completely and I was able to realize
that things were not happening as they should.

Let’s stop and look at it from the end-user’s point of view.
If he buys his computer from any source that limits the
assistance given to him (for example, mail order), the
authors of CP + claim that it can be up and running with
NO programming necessary.

Upon opening the manual the buyer is in for a surprise.
The pages are neatly divided with tabbed dividers for ease
inlocating the sections. But here’s the surprise: SectionIis
called “Meet CP + . It consists of only 1/2 page. O.K! On to
Section Il called “Using This Guide”. Again, only 1/2 page.
It is only when we arrive at Section III, “Operating Con-
cepts & Glossary” that I was able to find a use for the
tabbed dividers. This section has 4 pages. If there is no
need for a divider, why put on such a show over nothing?
Could this be a portent of things to come ?

The installation procedure is simple and the manual writ-
ten in a tutorial fashion with demonstration files on the
disc. One can type CP+ and from then on is told one can
run all of one’s programs from there, doing whatever
copying, etc. from within the CP + environment. I found
myself unable to do that. As I stated in the beginning of

Lifelines/TheSoftware Magazine, March 1983

this article, the PIP problem and the making of files Read
Only or Read/Write when desired is overwhelming to the
beginner at the first try.

There was some thinking going on in the creation of CP +
and the author found some interesting problems that
needed solving. For example:

1) allowing a description of each file in the directory
2) performing multiple renames with wild card extents
3) setting up a queue for copying, printing and erasing

Some of these problems were solved but most of them
were not solved in my copy of CP+. Will they be in the
future ?

The tutorial is directed at simplicity. For example, from the
glossary:

The Cursor - The cursor is the moving marker that helps
tell the user where the next action is to take place on the
screen. Itis usually a M ora , and may be blinking on
or off.

The main menu, in addition to a help call, review com-
mands, change user areas and quit to CP/M contains three
sub-menu calls. You can select and run a program, get the
print command menu or a file command menu.

All of the menus are the same format:
(SEEFIG. 3)

For some reason, the drawing of the lines around the
menu has gone askew. All line are printed, and then the
vertical lines are erased. This a minor bug in a program
severely infested but is an indication of carelessness with
something that could have been easily remedied. An ex-
amination of the Select and Run Menu yields a surprise
right away. In the area designated for the File catalog
(notice I said catalog not directory), is a wide column for
File Description. A facility within CP + allows you to cre-
ate a catalog file on the disc. This facility reads the direc-
tory and invites you to type in a description of the direc-
tory entry. When you want to run a program, you can de-
termine which program you want to run by its descrip-
tion, not by a file name limited to 8 characters and 3 in the
file type. How often I have looked at filename such as
“DU7GL.COM” and wondered what in blazes that was
supposed to mean.

The (S)elect option allows you to page thru the catalog
looking for the program to run. The (E)nter option per-
mits entering the program to be run by its catalog number.
When I tried doing this with PIP, I copied a short
file from one disc to the other and waited for the return to
the CP + menu. I was disappointed to see the CP/M “A>"
and had to re-enter CP+. That happened every time I
tried to run a transient program from a menu or when I
used the “Enter a CP/M command” mode from another
menu. An unexplained error message “Updating the
Print Queue” was displayed just before exiting to CP/M.

One of the unfulfilled promises is that of being able to
mass rename files using wildcard attributes. By this
means, one should be able to rename DEMI1TIXT,
DEM2.TXT, DEM3TXT and DEM4.TXT by entering to the
rename function DEM?TXT as the old filename and

Lifelines/The Software Magazine, Volume III, Number 10

DEMO?TXT as the new. This is supposed to yield the four
files DEMOLTXT, DEMO2TXT, DEMO3TXT and
DEMOA4.TXT. Sorry, but it just doesn’t work. The first file
was renamed to DEMO and I had the option of deleting
each already-existing file as CP+ tried to rename every
other file DEMO. I would have ended up with one file
called DEMO. That could have been a disaster had I not
realized the problem myself and stopped the operation.

Itried the “’Copy System Files” menu. The option is copy-
ing the CP/M system files or CP + system files. The first re-
quires that you have SYSGEN on the disc. Sysgen is run,
you must answer its prompts, it does its thing and back to
CP/M......Reload CP + again!!!! Copying the CP + files re-
turned to CP+ after copying and verifying each file
copied. It used its own copy facility rather than PIP and
was much slower.

One of the teasing prospects offered to the CP+ buyer is
the hope of setting up a print queue or list of files to be
printed and having it done, batch mode, while the opera-
tor is off having lunch. I tried it. I printed the first file, and
the machine appeared to get trapped in a loop of form-
feeds that did not end until I turned off the printer.

There are several parameters that I have used to judge
each of these three packages, SUPERVYZ, STOK PILOT
and CP +. The scale goes from 0 to 7.

P = supplied by programmer
SUPERVYZ STOK PILOT CP+

Flexibility 5 7 il
End User Usefulness 7 7 2
Programming Level

Needed 5 6 0
Fulfills Promise 7 7 2
Expandability 7 7 0
Speed 4 6 5
Manual Clarity 6 7 6
On Board Help (for
programmer) 6 0 2
On Board Help (for end
user) P B 2
Price $95 $130 $150
Operating System:
CP/M 14 no yes yes
CP/M 2.x yes yes yes
MP/M 2.x some no no

With this in mind, I would recommend SUPERVYZ as
the most useful of the three. One surprise is that it is also
the least expensive package of the three. Another benefit I
discovered during the review process was that Steve
Fisher is evidently a software hacker himself and unable
to leave a good thing alone. There are more modifications
and improvements in the works now and should be avail-
able by the time you read this. The programmer using
STOK PILOT could provide most of the same facilities and
his own unique format but at a greater effort on his part.
The effort in programming the copy program illustrated is
considerably more than that using SUPERVYZ's prede-
signed menus but the gain could be confidentiality of his
source when providing compiled programs.

(continued on next page)

21

Available from:

Supervyz: Epic Software Corporation
7542 Trade Street
San Diego, CA 92121

Stok Pilot: Stok Software Inc.
17 W. 17th Street
New York, NY 10011

CP+= Taurus Software Corporation
870 Market Street
San Francisco, CA 94102

Fekdedkdedkddokdokdokdokdeokdokdokdekkkdkkdkdkokkkkk

Figure 1

Epic Computer Corporation's SUPERVYZ Menu Definitions
Tomove within a field, use Right/Left Arrows or Control-D/Control-S.
To move between fields, use Up/Down Arrows or Control-E/Control-X.
To erase a character, use Delete; to erase a field, use Control-C/Control-U.
Pressing the Escape key completes entry of the selected Function or Menu.

ltem (0-11)[6] Function Title [System’s Editor] Clear? [Y]
Command Line [A:ED $3:$1.$2{-A| 23T} |ERA $3.$1.58%]

Optional Parameter Default Length
] 8]
] B]
][]
]
]

Optional Parameter Prompt
1 [Whatisthe File Name? i
2 [Whatisthe File Type (if any)? il
3 [On which Drive? 1 [A
4]
5(11

[]
[]

rive User Filename Ext Require Hide DriveUser Filename Ext equire Hide

A[0 J[ED T[COM] [Y]
1G] 1 [
[AR G Y
101 11

Di
6|
7
8 [
9 1 [1

———— D

1[]
111
1]
111

Figure 2

R: PCOPY.PIL
R: thisis a multiple copy program that calls PIP

ESC: *BYE

COMPILE: PCOPY

CLRS:

*START

R: define the variables as blanks for entry into the
R: first screen

DEF: $TODR

DEF: $FRDR

DEF: $TOFL

DEF: $FRFL

DEEF: $TOTP

DEF: $FRTP

C:N=1

*NUSTART

R: Get the entry form
U:CLRMSG

U:ENTRY

*FDR
CUR:22,10
INMAX: 1
A: $FRDR
U:CLRMSG
M:,,
UY:ERRMSG
M:Z,
ENDY:
JY:*FDR
M:,?,
UY:*HELP
JY:*FDR

*TDR
CUR:62,10
INMAX: 1
A:$TODR
M:,,
UY:ERRMSG
JY:*TBR

M: 2
UY:*HELP
JY:*TDR

R. dhhkhkkhkhkkkhhkhkhhkhkhkddhkhhdkhddddhddhdhddhhdddhhdddhhddx

*FFL

CUR: 22,14

INMAX: 8

A: $FRFL

M: *?

R: establish a value for switch if asterisk or ?
R: entered in file name
CY:N=0

U:*CLRMSG

M:,,

UY:*ERRMSG

JY:*FFL

M@ ;

UY:*HELP

JY:*FFL

*FTP

GCUR:.22 15

INMAX: 3

A: $FRTP

M:%?

R: establish a value for switch if asterisk or ?
R: entered in file name
CY:N=0

M:,,

UY:*ERRMSG

TY:*ELP

M::, 2,

UY:*HELP

J:*FTP

T

R, khkkhkkhkhkhkhhkhhkdkhhhhhhhhhhdhhhdhhddhhdhhdkdhhhrdrdhdhdd

*TFL
CUR: 62,14
INMAX: 8

Lifelines/TheSoftware Magazine, March 1983

A:$TOFL
U:*CLRMSG
M:,,
UY:*NULLTO
JY:*START
N, 2
EE-*HELP
JN2TFL

SR

CUR: 62,15
INMAX: 3
A:$TOTP
U:*CLRMSG
M:, .

1R
UY:*NULLTO
JY:*START
M:,?,
Y:EHEEPR
JN-*TIPR

R: this exec for when have to & from files entered

U:*OK

M: YOK

JN:*NUSTART

EXIST(N): $FRDR:$FRFL.$FRTP

JN:*ERR2

JN:*NUSTART

EXECY: PIP $TODR:$TOFL.$TOTP =
$FRDR:$FRFL.$FRTP;PCOPY

END:

R: this exec for when NULL entered as destination
R: name

*NULLTO

U:*OK

M: YOK

JN:*NUSTART

EXIST(N): $FRDR:$FRFL.$FRTP

UN:*ERR2

JN:*NUSTART

EXECY: PIP $TODR: = $FRDR:$FRFL .$FRTP;PCOPY
END:

*ENTRY

CUR: 20,3

T:{SINGLE/MULTIPLE FILE COPYING }

CUR: 16,6

T:ENTER {? } AT ANY ENTRY FOR HELP

CUR: 0,7

T+ ++t++++++++++++F+++++++++
CUR: 0,9

T:{enter z here to leave copy program }

CUR: 0,10

T:{FROM } DISC DRIVE
EUR: 21,10

T: $FRDR

CUR: 0,14

T:{FROM } FILE NAME
CUR: 21,14

T: $FRFL

Lifelines/The Software Magazine, Volume III, Number 10

CUR:0,15
T:{FROM } FILE TYPE
CUR: 21,15

T: $FRTP

CUR: 40,12

T:{(may be CR only for SAME Name & Type) }
CUR: 39,10

T: {TO } DISC DRIVE

CUR: 61,10

T: $TODR

CUR: 39,14

T: {TO } FILE NAME

CUR: 61,14

T: $TOFL

CUR: 39,15

T: {TO } FILE TYPE $TOTP

CUR: 61,15

T: $TOTP

CUR: 0,17
T:+++++++++++++++++++++++++++
E:

*HELP

CLRS:

LF: 4

T:You must enter a file drive for both the {from} drive
T:and the {to} drive.

e

T:You must enter a file name and file type for the {to}
T:filename and type.

gl

T:However, the {from} filename and type may be
T:entered with a {CR} alone,

T:if you want to keep the same file name.

il

T:To copy all files with the same filename (the part to the
T:left of the dot),

T:enter an asterisk { * } for the filename.

T:To copy all files with the same file type (the part to the
T:right of the dot),

T:enter an asterisk { * } for the file type.

T

T:-THEREFORE, to copy all files from the disk, enter { * }
T:for both the file-

T:name and file type.

T:

T Now press {RETURN> } to continue.

HOLD:

CLRS:

R: re-enter the entry form and return to same point
U:*ENTRY

E:

*ERRMSG

CUR: 20,20

T: { YOU MUST HAVE AN ENTRY }
E:

*ERR2
CUR: 20,20
T: { $FRFL.$FRTP NOT FOUND ON DRIVE $FRDR }

(continued on next page)
23

24

E:

*CLRMSG
CUR: 20,20
T:E:

*OK

CUR: 27,20

TNR:{ O.K. TO COPY ? }
INMAX: 1

A:

E:

*BYE

CUR: 27,20

T:{COPY ABORTED }
END:

Figure 3

CP+ SELECT AND RUN A PROGRAM
This allows you to select and run a program.
Your Options are:

(H) HELP! (V) VIEW the DIRECTORY
(S) SELECT the NAME of a PROGRAM to be RUN

(E) ENTER the NAME of a PROGRAM to be RUN

(C) CHANGE the CURRENT DISK DRIVE

Press the chosen LETTER or turn a page.

Item FileName. Type File Description

PAGE TURNING
for the NEXT PAGE
for PREVIOUS PAGE
CHOOSE a PAGE NUMBER

o
This is PAGE1 |
of the CATALOG !
for DISK DRIVE B _i

A PROFESSIONAL SYSTEM
AT A P.C. PRICE

$2995
TURN-KEY S-100 SYSTEM
FEATURING:

Teletek Systemaster SBC

enclosure 2 Parallel & Serial Ports
2 8" D.D., DS. Drives CPM™ 2.2 Installed
ADDS 3A Viewpoint Terminal

Integrand 10 slot

Full Teletek line available. Multi-user & Turbodos™
options can be added. Other S-100 products,
printers, peripherals, personal computers, and
CPM™ software products available at 15-20%
above wholesale cost. Full service and repair.
Workshops and classes held regularly.

TOTAL ACCESS
SUITE 202, 2054 University Ave.
Berkeley, California 94704

415-540-8066

WHAT HAPPENED

NO PROBLEM. WE'VE BEEN

USING BACKREST. WE'LL

JUST RESTORE IT.

BACKREST INTELLIGENTLY

BACKS UP ANY HARD DISK TO
FLOPPY DISKS AND ALLOWS

SIMPLE RESTORATION LATER,/

PROF. EASY —
WE LOST THE

TO IT 211!

IT ONLY BACKS UP FILES
THAT WERE CHANGED.

IT PRODUCES A REPORT
SHOWING WHAT IT HAS
DONE, EVEN STATISTICS
ON HARD DISK USAGE
AND BAD FILES!

DOESN'T IT USE
A LOT OF
FLOPPY DISKS?

@ Stok Software Inc.
17 West 17th Street
New York, N.Y. 10011
(212) 243-1444

BUT WHAT IF A
FILE IS TOO BIG
FOR A FLOPPY

THIS IS GREAT!
MY DATA IS SAFE, AND
| DIDN'T HAVE TO SPEND
THOUSANDS BUYING A
TAPE BACKUP DEVICE.

BACKREST WILL
SPLIT IT BETWEEN
CODED FLOPPY DISKS.

Toll free order line:

(800) 431-1953 ext 183

Complete 8 inch CP/M format disk
and manual retails for $99.95. N.Y.
residents please add sales tax.

In NY (800) 942-1935 ext 183

= e

Dealer inquiries invited.
CP/M is TM of Digital Research

Lifelines/TheSoftware Magazine, March 1983

Feature

Review of Micro Resources
Washington Version 3.2

There are several utility programs
that Digital Research has included on
the CP/M distribution disk that are
designed to do directory and file
manipulation. These programs are
not the most user friendly or conve-
nient programs, and we have seen
many alternatives developed over
the past several years both in the
public domain and proprietary
arenas. One of these, WASH, is a
program that is distributed by Micro
Resources, 2468 Hansen Court, Simi
Valley, Ca. 93065. At the the time of
writing, the price for WASH was
$49.95. I obtained the program on 8”
single density IBM standard format
diskette, and I assume the various
popular 5.25” formats are available as
well.

Two files are supplied on the distri-
bution diskette - WASH.COM, the
utility itself, and WASHINST.COM,
an installation program. The manual
accompanying the program is photo-
offset and 22 pages in length. The
manual covers installation using
WASHINST in the case where the
target terminal is listed in the menu
(whereby the installation is trivial) as
well as for any terminal not covered
in the menu. My Zenith Z-19 was in-
cluded on the menu, but it is a rela-
tively simple procedure to customize
WASH for an unsupported terminal.
All that is required is that cursor ad-
dressing and clear screen functions
are available on the CRT. The author
even had the foresight to allow pad-
ding by sending a user-specified
number of nulls (00 hex characters)
after a cursor control sequence so as
to allow use on terminals requiring a
pause at very high baud rates. I am
presently using WASH at 19.2 Kbaud
with no display problems whatso-
ever. Another often-overlooked ca-
pability included is to use ANSI-type
cursor addressing as an alternative to
ASCII addressing.

WASH is capable of running in non-
video mode for use on a hardcopy
terminal as an alternative installa-
tion-time option, but the program is

clearly designed as a screen oriented
utility, and that is where it really
shines. See figure 1 for a typical dis-
play of the file directory while run-
ning WASH. The header displays the
current drive and USER number (the
latter may be disabled at installation
time if running CP/M version 14 or if
USER capability is not desired). The
remaining free space on the disk is
also displayed; the program uses
CP/M’s disk parameter block (DPB)
to automatically adjust for allocation
group size, so this is automatically
calculated regardless of disk format.
The U command can interrogate any
drive for remaining space as well.

The file listing consists of four col-
umns of files on a 24 by 80 terminal
and shows both visible and system
files ($DIR or $SYS attributes as set
by STAT.) There is a file pointer (two
arrow heads) that can be advanced
forward by the space or carriage re-
turn keys, backward with the B key
(case does not matter) or can “zip”
ahead 10 files with Z. It is thus very
easy to immediately get to a specific
file on the disk.

Two of the available commands oper-
ate either on one file or on a group of
files that have been “tagged” by the
operator. When tagged, there is a
visual cue of a “#” symbol next to the
file. Tagged operations include dele-
tion (the operator is queried, if he so
requests, on a file-by-file basis to pre-
vent catastrophes) and mass copy to
a specified disk/user combination.
There is no re-tag function, which
might be useful if a user wanted to
copy the same set of files to more
than one destination disk/user.
Other single file commands allow for
deletion (with query), copy to a desti-
nation disk/user, file view on the
console device which can be frozen
with 1 S ala CP/M itself or aborted
with any other keypress, and output
of a file to either the LST: or PUN:
logical device. The view function (as
do both punch and list) conveniently
strips the high order bit from each
character before display so WordStar

Lifelines/The Software Magazine, Volume III, Number 10

Charles H. Strom

files, for example, may be clearly
seen.

Additional commands include re-
port of the size of the currently
pointed-to file, display of version
number/author, exit to the CCP via
warm boot, and login of a new drive/
user combination. This latter very
powerful command enables the user
to call the program and then do any
necessary manipulations on any
other disks without the necessity for
WASH to be resident on disk. The
program is more or less foolproof in
that there are complete, easy to un-
derstand error messages. One kink
that annoyed me is that if I tried to
delete aread-only file, I got the all too
familiar “BDOS” error and was
dumped unceremoniously back to
the operating system. The author
tells me that indeed there is no provi-
sion for deleting or renaming R/O
files because, in essence, he does not
use this feature of CP/M and there-
fore never really considered this a
necessary capability; it may be in-
cluded in a future version. Another
suggestion for future inclusion is that
SYSTEM files (those not normally
visible through the DIR command)
be flagged as such. Under the current
version, there is no such flagging and
all files are displayed at all times. This
is admittedly a very minor quibble. I
would also like to see a command
that will re-tag a group of files as pre-
viously mentioned; in this way I
could follow a mass copy to an ar-
chive file with a mass deletion of the
files from a working disk, for exam-

ple.

The WASH manual is supplied as a
twenty-two page photo offset set of
sheets stapled together. Not very
fancy, but it is indeed the best exam-
ple of a manual I have yet run across
in CP/M software. There is an intro-
duction, an installation section, com-
plete descriptions of all commands,
and discussion of all possible error
messages and what they mean.
Granted it is easier to produce a
grade A manual for a program of lim-

(continued on next page)

ited scope such as WASH than it is for
a complicated word processor, for ex-
ample, but after seeing so many ex-
amples of omission, misdirection
and downright illiteracy in CP/M ap-
plications programming manuals
(with incidentally, no relation to the
price charged), it is gratifying to see
that there are people in the micro-
computer world who pride them-
selves on being able to communicate
with the user.

The final discussion appropriate for a
review of a program such as WASH is
a comparison with public domain
programs that have similar func-
tions. WASH itself started life as a
public domain (free) program con-
tributed by its author to the CP/M
community. Though the basic func-
tions are identical in the present ver-
sion, there have been additional
commands added, and the user in-

terface is much friendlier. The other
public domain program with similar
capabilities is called SWEEP, written
by Robert Fisher. SWEEP is written in
PL/I, and is therefore several times
larger than WASH. It takes up more
space on a disk and takes longer to
load, and does not have the screen
oriented display of WASH. The func-
tions are slightly more complete;
there is support for read-only files
(see my complaint above) as well as
an optional copy with verification. In
this case a CRC (Cyclic Redundancy
Check) is calculated for the file both
on source and destination disks and
is compared to insure equality. On
the negative side, SWEEP has a cou-
ple of bugs; it will hang when trying
to copy null files, and there is an ob-
scure, seldom observed bug that I
have seen and has just been con-
firmed by another user that once in a
great while will cause the system to

Typical WASH screen presentation

hang in the midst of a multiple CRC
file copy operation. The biggest ad-
vantage of SWEEP is that it is free! If I
had my choice of either SWEEP or
WASH for free or for that matter of
purchasing each one for $50, I would
choose WASH because of its display
formatting and smaller size (and
faster execution speed.) If I were a
novice CP/M user, I would also lean
towards WASH because of its easier
to understand operation, the excel-
lent manual, and the vendor support
that is understandably absent in a
public domain program. However,
considering myself a seasoned CP/M
user and programmer, I would feel
hard-pressed to part with $50 for
WASH with something nearly as
good available gratis. I hope that my
review has given the reader enough
insight for him to make an intelligent
decision in this matter for himself.

++++ MICRO RESOURCES DIRECTORY MAINTENANCE UTILITY - Version 3.2 ++++
[Current Active Directory Drive A: User 00 — Space 478 K Bytes]

Miscellaneous

S Start New
Disk Drive
(** assumed)

U Disk Space

X Reboot Sys

Screen Controls File Operations
sp NextFile V Viewat CRT C Copy File
cr NextFile L List File D Delete File
B Backup P PunchFile F Show Size
Z ZipAhead (any key aborts) R Rename File
T Toggle Tag M Tagged Copy Q Tagged Dlete
CAP COM PWD COM
CD COM QBAX COM
COMPARE COM QBAXPACH .COM
DIFF COM STARTUP .COM
ERASE COM WASH COM
GENINS COM
INIT COM
LD COM
MKDIR COM 4
NAMES .DIR

3 THIRK WE Stould G, WEsE
CooR‘D\UgTES %l@r"

26

Lifelines/TheSoftware Magazine, March 1983

Software Notes

Tips & Techniques/Unbuffering Your Input

Most of us have come to appreciate
keyboard buffering as a BIOS fea-
ture. Where present, the keyboard
buffer permits you to type ahead of
the computer. This means that if you
have an input sequence that is inter-
rupted by disk action, for example,
you can input the entire sequence at
once, and it will be read from the buf-
fer as needed.

There are occasions, however, when
it is convenient to blow the buffer
away and provide a clean slate. This
is often the case with respect to error
processing. If you have an input se-
quence that permits the operator to
get ahead of the machine and some-
thing runs amok, you will want your
program to branch to an error routine
which will ring the bell, flash the
screen, or otherwise protest. Once
the error is detected, oftentimes the
remainder of the keyboard buffer
will simply wind up being more er-
rors, due to the unexpected branch-
ing caused by the first error. This may
mean incessant bell ringing or screen
flashing.

A more reasonable approach is to
have a keyboard buffer discharge
routine built into the error trap. If this
is done, then you can leave the error
trap with a clean slate and greatly re-
duce the likelihood of an immediate
return.

In CB-80, there are two functions that
are very useful in accomplishing this
task. They are CONSTAT% and
INKEY. The CONSTAT% function
tests the console status to see if a
character has been entered but not
read. INKEY will read a character
and will not echo it to the screen.

Thus you can blow out the input buf-
fer with the routine set forth as fol-
lows:

WHILE CONSTAT%
dummy% =INKEY
FOR delay% =1 TO 1000
NEXT delay%
WEND
This example, however, introduces
several novel concepts which need

further explanation. The first line is
quite unusual in itself. By definition
the CONSTAT % function returns a -1
if akey has been entered and not read
and a 0 if the console is ready. The
same program logic could be ob-
tained writing ~ “WHILE
CONSTAT%=-1" or “WHILE
CONSTAT%<>0"; however, I delib-
erately chose the version set forth to
illustrate what is referred to in the

CB-80 manual as a ‘logical expres-
sion. If you are familiar with Pascal,
you will probably be tempted to use
the word ‘boolean’ to describe how
this works, but for reasons not clear
to me the CBASIC/CB-80 documen-
tation conspicuously avoids the
word.

The point is, regardless of what you
call it, that whenever you are testing
an expression to see if itis a —1, it is
unnecessary to include the ‘=-1
portion of the equation in your
source code. This is equally true of IF
.. THEN statements. You may, for ex-
ample, quite properly write, ‘IF a%
THEN STOP’, which will do the same
thing as the more familiar TF a%=—1
THEN STOP!

Perhaps, I have digressed too much.
Getting back to the original example,
if a key-stroke is in the buffer,
CONSTAT% will return a —1 and
you will enter the loop. Next the
INKEY function will read one charac-
ter out of the buffer. It will not be
printed on the screen, but its value
will be assigned to dummy%. As its
name implies, dummy% is a tempo-
rary variable with no particular pur-
pose other than to provide a resting
place for the value returned by the
INKEY function.

The next line is, of course, a delay
loop designed for the single purpose
of wasting some time. The need for
its presence, is, more than anything,
the inspiration for this article. I first
wrote this program segment without
this delay loop, and then spent the
next two days trying to figure out
why it didn’t work. The particular ex-
ample was developed on a Radio

Lifelines/The Software Magazine, Volume III, Number 10

Robert P. Van Natta

Shack Model 16 using Lifeboat CP/M
version 2.25d. I suspect, however,
that the problem is not unique to this
equipment, and that is why I write.
The problem is that the CONSTAT%
function returns a misleading re-
sponse if it comes too soon after the
INKEY function.

I'would be going quite a way out on a
limb if I were so brash as to claim to
know why this is so. However, I am
satisfied that it is not a bug in CB-80,
as the code generated by CB-80 ap-
pears to be correct. I surmise, there-
fore, that it is a limitation in the im-
plementation of the keyboard buffer-
ing scheme.

The problem, if it exists in your sys-
tem can be demonstrated by the fol-
lowing CB-80 program:

print “hit several keys at once”
a% =inkey
for stall =1 to 400
next stall
while constat%
a% =inkey
print constat%
for wait% =1 to 1000
next wait%
print constat%
wend

Ordinarily, you would expect this
program to print a column of ‘—1s
down the screen until the buffer was
empty and then print two zero’s.
Pickles and Trout CP/M will do just
that. However, Lifeboat CP/M for the
Model II/16 will print an alternating
column of 0's and —1’s, thus demon-
strating the unreliability of
CONSTAT% which immediately fol-
lows an INKEY.

The problem identified here is
equally applicable to the use of the
CONCHAR% function. It may like-
wise be demonstrated in CBASIC V.
2.07. However, with CBASIC it is just
barely demonstrable in the most
Spartan loop, and to my observation
sometimes works correctly and
sometimes not.

(continued on next page)

27

How much delay is
needed?

For those of you that have been with
CB-80 for a while you will recall ver-
sions of it prior to version 1.3, in
which the INKEY function failed to
work at all. As I understand it, the
cause of this early failure was a ‘docu-
mented bug’ within CP/M function 6.
Version 1.3 of CB-80 solved this prob-
lem by bypassing function 6 and
using direct console I/O through the
BIOS.

Although I don't rule out the possi-
bility of a connection between the er-
ratic behavior of the CONSTAT%
function and the INKEY function,
the connection is not obvious (at least
to me).

The amount of absolute time re-
quired for CONSTAT% to get its act
together is very minor. In the exam-
ple, I show a CB-80 integer loop with
a size of 1000. I selected this size on
the basis that:

1) a loop size of 300 always pro-

duced the wrong response.

2) aloop size of 400 produced er-
ratic results.

3) a loop size of 500 appears to
work reliably.

A word of caution is appropriate
here, however. If you are inclined to
attempt to duplicate my results, un-
derstand that the print statements in-
side the WHILE loop require consid-
erable time themselves, and must be
removed for accurate testing. The
testing problem is therefore some-
what akin to checking a refrigerator
door light to see if it really shuts off
when the door is closed.

As you know from an earlier article of
mine about CB-80 in Lifelines/The
Software Magazine, CB-80 only exe-
cutes six instructions to complete an
iteration of an integer FOR loop. If
you would care to multiply 6000
times the number of instructions per
second that the Z80 processor will
handle, it should be obvious that the
time delay is not going to ruin the
performance of your program.

Conclusions

The example that I used to begin this
article is almost a textbook example
of the correct way to implement a
WHILE loop. Likewise, the uses of
CONSTAT% and INKEY are very ap-
propriate. It is unfortunate that a de-
lay must be inserted to make it all
work correctly. I believe, however,
that the overall concept of using this
routine to blow down the input buf-
fer is a good one as there are often
critical places in a program (i.e.
points of no return) where it would
be best if the operator could not anti-
cipate the future.

From my vantage point on the flanks
of Mt. St.Helens, I have no idea how
pervasive the problem described
here is among CP/M implementa-
tions, but it is my notion that if it ap-
pears in Lifeboat CP/Mfor the TRS80
MOD I1/16, it probably appears else-
where as well, and should be a con-
sideration in any applications pro-

gram writing. |ij

Make life easier with...

WASH

the latest in an easy to use CP/M directory maintenance
utility that replaces a dozen older programs with its
menu driven file handling capabilities like:

e DIRECTORY DISPLAY

e FILE VIEW AND PRINT

e FILE RENAME

o FILE DELETE

¢ FILE COPY

e FILE AND DISK STATISTICS

e TAGGED GROUP COPY AND DELETE

WASH is fully compatible with CP/M user area
directories and is delivered with a user friendly
installation program to adapt WASH to your 24 x 80
console. WASH is available on 8" single density diskette
for $49.95 plus 6% sales tax.

Contact:

A MICRO RESOURCES

@ 2468 Hansen Ct.
B

Simi Valley, CA 93065
(805) 527-7922

CP/M is a trademark of Digital Research

Clarification

Charles Klug, Sales Support Specialist of Tele-
video Systems, Inc. has informed Lifelines that
the following information given in Charles Sher-
man’s Tips & Techniques column on Televideo 950
(Jan. 1983, Vol. III, No. 8, p. 34) is inaccurate. “If it
doesn’t have revision level 2.0 or higher, write or
call Televideo and they will send you free replace-
ments.”

Below is an excerpt from a letter from Mr. Klug
stating their policy concerning replacement of
firmware.

The article. . . indicated all users could call TeleVideo
and receive the latest revision firmware for their termi-
nal.

That is true, if, there is a problem validated by TeléVideo
in using our terminals and it relates to a firmware prob-
lem. However, we do not otherwise replace firmware.

Should the user care to obtain the latest firmware it can
be ordered through their dealer.

Users of TeléVideo terminals are welcome to call our
Product Support Group if they are experiencing prob-
lems in making our product operate or require more in-
formation on our terminal products.

Lifelines/TheSoftware Magazine, March 1983

Feature

An Introduction
To 8086 Programming

Overview

With the advent of the new generation of 16-bit home
computers, typified by the IBM PC, there is a growing in-
terest in the sixteen-bit processors on which the new sys-
tems are based. Those who have been with the home
computer movement since its advent seven years ago are
thoroughly acquainted with such eight-bit devices as the
6502, the 6800 and the 8080/Z80, and much home com-
puter conventional wisdom is based on these simple,
eight-bit microcomputers. The new sixteen-bit proces-
sors, however, differ from their predecessors in more than
just the number of bits in the accumulator. Often more
powerful instruction sets are available, there are addi-
tional registers and addressing modes and even the sys-
tem architectures are bolder and more ambitious. Under-
standing and programming the 16-bit microprocessors
will require mastering these new architectural features.

The 8088, on which the IBM PC is based, is functionally
identical to the 8086, the main difference being that the
8088 has an eight-bit external data bus while the 8086 has a
sixteen-bit external bus. The 8086, developed by Intel, is
an expansion of the 8080 architecture, also developed by
Intel. While the Zilog Z80 processor is also an offshoot of
the 8080, it is essentially an 8080 with additional architec-
tural features and an expanded instruction set. The 8086
does not incorporate the unique Z80 features, such as the
alternate register set and the IX/IY registers, instead it is a
unique expansion of the 8080, both in data width and in
architecture. Much of the new architecture incorporates
features previously available only with mini-computers,
and it is primarily those novel aspects of the 8086 that will
be discussed in this article.

Programmers already familiar with the 8080 or the Z80
should find this article useful in getting started in
8086/8088 programming, however it is not expected that
one can get a thorough education in 8086 programming
just by reading this. Further study should be pursued by
acquiring and mastering one or more of the books devoted
entirely to this subject. There are several to choose from,
and four are cited here: The 8086 Family User's Manual by
Intel gives a complete, technical description of the 8086
(and associated devices) plus full details of the instruction
set and descriptions of Intel’s program development tools
(such as the ASM-86 assembler and the LINK-86 linking
loader). The iAPX 86,88 User’s Manual, also by Intel seems
to be a more recent version of the previous book, and
either book should provide very comprehensive coverage
for the serious user. Written at a lower level but consider-
ably more readable than the Intel manuals is The 8086
Primer by Stephen P. Morse from Hayden Book Company.
The 8086 Book by Russell Rector and George Alexy from
Osborne/McGraw-Hill is along the same lines as the
Morse book but at a higher level and with much more de-
tail.

Lifelines/The Software Magazine, Volume III, Number 10

John Blanton

Leaving those volumes to cover the fine details, this article
will only hit the high spots of 8086 programming, gener-
ally paying more attention to architectural considerations,
while barely touching on the subjects of program develop-
ment (editors, assemblers and linking loaders). Covered
will be matters of structure and use of the 8086 registers
(plus correspondence between 8086 registers and 8080
registers), the principles of memory segmentation pro-
vided by the 8086 architecture, the 8086 addressing
modes, the status flags and some discussion of program-
ming techniques for the 8086.

Registers

While the 8080 has only eight 8-bit registers and two 16-bit
registers the 8086 has thirteen 16-bit registers plus a flag
register (which could be a 16-bit register, except there are
not sixteen flag bits). The 8086 registers can be logically
considered in five separate groups:

1) general registers

2) pointer/index registers
3) segment registers

4) program counter

5) flag register

There are four registers in each of the first three groups,
and the remaining two have one register each. The follow-
ing paragraphs will discuss the programming considera-
tions for each group and will describe the correspondence
between these registers and the 8080 registers.

The general register group consists of the AX, BX, CX and
DX registers. The approximate correspondence to 8080
registers is as follows:

AX - A
BX - HL
X - BC
DX - DE

Note that while the 8086 AX register is a 16-bit register, its
8080 counterpart, the A register is only an 8-bit register.
The AX register, like the others in this group, can be
treated as either a 16-bit register or as an 8-bit register pair.
For example, just as the 8080 BC register pair can be ac-
cessed as separate B and C registers, the CX register can be
accessed as the 8-bit registers CH and CL (high order and
low order, respectively). The following table shows the
8-bit register pairs which make up each of the 16-bit gen-
eral registers.

16-BIT HIGH LOW
REGISTER BYITE BYTE
AX AH AL
BX BH BL
CX CH CL
DX DH DL

(continued on next page)

29

The general purpose registers are the working data regis-
ters of the 8086. Adds, subtracts, and’s and or’s are per-
formed on data here. These registers tend to be more sym-
metrical with respect to arithmetical operations than do
the corresponding 8080 registers. While the 8080 requires
that the A-register be the destination for arithmetical and
logical operations, 8086 instructions exist, for example, for
adding any two 16-bit or any two 8-bit general purpose
registers and storing the result in either. The asymmetries
that do exist are of interest, and, although all the peculiari-
ties can not be treated here, some highlights will give
readers an idea of what to expect.

The following table shows the relationship between cer-
tain operations and the general registers implicit in those
operations:

OPERATION IMPLIED
REGISTER

Word Multiply,

Word Divide, — AX

Word I/0

Byte Multiply,

Byte Divide,

Byte I/O, — AL

Translate,

Decimal Arithmetic

Byte Multiply, — AH

Byte Divide

Translate — BX

String Operations, — CX

Loops

Word Multiply,

Word Divide, — DX

Indirect I/O

In particular, the MUL (unsigned, integer multiply) and
the IMUL (signed, integer multiply) implicitly use the
AX, AH, AL and DX registers, depending upon which
form of multiply is coded. In the case of a byte multiply
the source operand is multiplied by the AL register, and
the 16-bit result is placed in the AX register, with the most
significant byte in the AH register and the least significant
byte in the AL register. If a 16-bit multiply is to be per-
formed (using the 16-bit versions of the multiply instruc-
tion) the source operand is multiplied by the AX register,
and the 32-bit result is placed in the DX and the AX regis-
ters, with the most significant half in the DX register.

A similar situation exists with the DIV (unsigned, integer
divide) and the IDIV (signed, integer divide) instructions.
For the byte version of the divide instructions the byte
source operand is the divisor and it is divided into the six-
teen-bit dividend in the AX register, and the byte quotient
is returned in the AL register, while the byte remainder is
returned in the AH register. For the 16-bit form of the di-
vide instructions the 16-bit source operand is divided into
the 32-bit dividend formed by the DX and AX registers
(the DX register being the most significant part). The
16-bit quotient is returned in the AX register, and the
16-bit remainder is returned in the DX register.

The decimal adjust instructions AAA (ASCII adjust for
addition), DAA (decimal adjust for addition), AAS
(ASCII adjust for subtraction), DAS (decimal adjust for
subtraction), AAM (ASCII adjust for multiply) and AAD
(ASCII adjust for divide) all imply either the AL register or
both the AH and AL registers.

As with the 8080, a particular register is implicit with
input/output operations. The AX register is implied as the
data destination/source whenever a 16-bit input/output
instruction is coded. The AL register is, likewise, implied
when a byte I/O instruction is encoded. Also, as with the
8080, the source/destination port' may be named directly
by the instruction (by coding the port address as immedi-
ate data) or the instruction can implicitly designate the DX
register to contain the 16-bit value of the port address.

The XLAT (translate) instruction implicitly uses the AL
and BX registers. The AL register is summed with the BX
register to produce a 16-bit address. The byte value found
using this address is then loaded into the AL register. '

The CX register is used as a count register when string
operations are coded with the repeat prefix. In this case the
string operation is repeated until the CX register goes to
zero.

The pointer/index register group consists of the SP (stack
pointer), BP (base pointer), SI (source index) and DI (des-
tination index) registers. While these registers can partici-
pate in the basic arithmetical operations (exceptions noted
above), these registers are not meant for general computa-
tion and data manipulation but are used for computing
addresses to point to data. The SP register is an exact
parallel to the 8080 stack pointer. It contains a 16-bit ad-
dress, which is automatically accessed for computing the
location in memory of data to be stored or retrieved by
push and pop operations, and it is automatically decre-
mented or incremented as required. The remaining three
registers in the group are a little more interesting, since
they have no counterparts in the 8080 (or the Z80). The BP
register serves as a ‘base’ from which relative data ad-
dresses are calculated. The SI and DI are auio-increment-
ing/decrementing registers used for accessing strings of
sequential data. The particulars of these applications will
be discussed later in the section on addressing modes.

The four segment registers of the 8086 provide the means of
dynamically altering the physical address space of the
processor to any 16-byte boundary within the available
physical memory address space. How this is accom-
plished will be discussed in the section on memory seg-
mentation to follow. The four registers involved are:

¢S CODE SEGMENT
DS DATA SEGMENT
SS STACK SEGMENT
ES EXTRA SEGMENT.

While the members of the pointer/index register group are

_usually interchangable with the general registers as

sources and destinations of data for data move, arithme-
tical and logical instructions, the segment registers are
not. Special instructions are used for referencing data in
these registers, and even then the registers are not treated
equally by the instruction set. For example, there exists an
instruction for moving data from memory or register to a

Lifelines/TheSoftware Magazine, March 1983

segment register, but this instruction cannot be used to
move data to the CS register. Additionally, there is a
special instruction, LES (Load Register and ES from
Memory) which loads sequential memory data into a spe-
cified register and into the ES register.

The program counter of the 8086 functions like that of the
8080. It contains the address of the next instruction to be
fetched from memory, except that for the 8086 this 16-bit
address is not the physical memory address for the func-
tion fetch, but is a 16-bit value used (in conjunction with
the 16-bit contents of the Code Segment register) in com-
puting the 20-bit physical memory address. Also like the
8080 program counter, the 8086 PC register is not available
for general move and mathematical operations.

The flag register of the 8086 functions like the correspond-
ing register of the 8080 with notable exceptions: 1) the 8086
flag register is a virtual sixteen bits long and contains extra
processor status flags within the additional eight bits; 2)
there are instructions for manipulating the 8086 flag regis-
ter which have no counterparts in the 8080. The standard
8080 flags (carry, parity, auxiliary carry, zero and sign) are
retained in the 8086 flag register, and they are in their tra-
ditional places. The following table shows the location of
the 8086 flags within the flag register:

XXXXOPDFISZXAXPXC.

The X’s in the table indicate unused bits in the register and
give rise to the thought that there may be some future ex-
pansion that makes use of these extra bit positions. As
with the 8080, these unused bit positions are only mani-
fested when the flag register is pushed onto the stack.
Even then undefined values are placed into bits on the
stack corresponding to the undefined bits in the flag regis-
ter. Otherwise, the remaining letters stand for:

OVERFLOW
DIRECTION
INTERRUPT ENABLE
TRAP ENABLE

SIGN

ZERO

AUXILIARY CARRY
PARITY

CARRY.

Familiarity with the standard 8080 flags is assumed here,
and only the unique 8086 flags will be discussed in detail.

NUTP>NOVH—TO

The overflow flag, when set, indicates a magnitude over-
flow in signed binary arithmetic. As such, it is the exclu-
sive-OR of the carries into and out of the high order bit of
the destination operand following an arithmetic opera-
tion. For example, when —1 (hexadecimal FFFF) is added
to —4 (FFFC) there is both a carry into the sixteenth bit and
a carry out. The exclusive-OR of these two carries is zero;
there is no overflow. This is as one would expect, because
the result, —5 (FFFB) is correct.

The direction flag is not a status flag in the sense of telling
the results of some just-completed operation; instead, it is
acontrol flag, whose setting determines the way an opera-
tion will be performed. The thing that it controls is the di-
rection of scanning for string operations. When the direc-
tion flag is set then the SI and DI registers will be auto-
decremented, and strings will be processed from back

Lifelines/The Software Magazine, Volume III, Number 10

(high order memory) to front (low order memory). When
the direction flag is zero the SI and DI registers are auto-
incremented during string operations. There are two 8086
instructions for setting up the direction flag. They are
CLD (clear direction flag) and STD (set direction flag). No
other flags are affected by these instructions.

The interrupt enable flag, like the direction flag, does not
indicate the results of some operation. It reflects the cur-
rent state of the interrupt enable flip-flop, and it is cleared
by the CLI (clear interrupt) instruction and set by the STI
(set interrupt) instruction.

The trap flag also enables a processor state - the single-
step mode - which is useful for program debugging. The
trap flag is set by pushing the flag register onto the stack,
setting the appropriate bit in the data at the top of the
stack and popping the top of the stack back into the flag
register.

Memory Segmentation

There are several reasons why memory segmentation is
desirable: 1) Total Address Space. Since the 8086 is only a
16-bit processor the various data registers hold sixteen
bits, and data transfers to and from memory are in 16-bit
chunks; so it is most convenient to be calculating 16-bit ad-
dresses all the time. However, if the entire physical mem-
ory is limited to a 16-bit address space, then the maximum
memory for a system would be 65,536 bytes (remember,
the 8086 still addresses on byte boundaries, not 16-bit
word boundaries). Segmentation provides a means of in-
creasing the physical address space without requiring ad-
dress pointers to be more than sixteen bits long. 2) Modu-
larity. It is often desirable to segregate logically indepen-
dent units (such as program sections, data sections and
program stack areas) from one another, so they may be
maintained independently. Memory segmentation, as
implemented in the 8086, allows such units to be allocated
their own, separate, logically and physically independent
memory areas. 3) Memory-Tasking. Memory segmentation
allows independent program tasks to be loaded simulta-
neously in memory with memory assignments being de-
termined only at load time and completely independent
of compile time address assignments.

As mentioned before, this facility is provided by the seg-
ment registers. These 16-bit registers provide implicit base
values used in the calculation of physical memory ad-
dresses for the different processor operations. They pro-
vide the 8086 with the capability of performing true mem-
ory mapping, and they ultimately allow the processor to
address a total of 1,048,576 bytes of physical memory. It
works like this:

Whenever the processor requires to access memory,
whether for an instruction fetch, for a data word/byte ac-
cess or for a stack operation, it first calculates a 16-bit ad-
dress according to the addressing mode coded for the par-
ticular instruction. This 16-bit address, however, is not
used to directly find a location in physical memory. In-
stead, the processor next calculates the required physical
memory address by adding the 16-bit address to sixteen
times the contents of the segment register implied by the
operation being performed. For example, if it is required
to add the byte value at physical address 1,000,048 a pro-
(continued on next page)

31

32

grammer may, after assuring himself that the DS reg-
ister will contain the value 62,500, code an ADD in-

struction that will result in a 16-bit address value of 48. The’

16-bit value 48 (hexadecimal 0030) is added to the 20-bit
value 1,000,000 (16 times 62,500, or hexadecimal F4240) to
obtain the ultimate physical address of 1,000,048 (hexa-
decimal F4270).

Although it may seem like a lot of bother to manage all
this, in reality most of the burden is taken off the program-
mer by carefully-designed assemblers, which perform all
the immediate address calculation and keep track of what
is where.

Each of the four segment registers is used for calculating
memory addresses for a separate kind operation.

The Code Segment Register is used in calculating physical
memory for every instruction fetch. The net effect is that
the contents of the program counter are added to sixteen
times the contents of the CS register to produce the physi-
cal memory address from which the next executable in-
struction is fetched. In actuality the 8086 processor is
“pipelining” instruction fetches during sequential pro-
gram execution. It is fetching bytes from program memory
in advance of its current requirements but still based on
the current PC value. Whenever a jump operation is exe-
cuted the next fetch address is computed from the current
PC contents, the pipeline is purged and prefetching to fill
the pipeline resumes from that point on (until another
jump is executed).

The Data Segment Register is used for direct memory ref-
erences for data, such as adding memory to a register or
incrementing memory, but there are specific exceptions as
noted in the following two paragraphs.

The Stack Segment Register is used as a base for all stack
operations. Also data addresses computed using the BP
Register (see “Addressing Modes” later on) can use the
Stack Segment register instead of the Data Segment Reg-
ister.

The Extra Segment Register is used in conjunction with
the DI Register in computing addresses for string opera-
tions.

These default segment register assignments can be super-
seded by the programmer through the use of the Segment
Override prefix. More will be told about prefix bytes later.

Addressing Modes

The ability to access data (and instructions) in many and
varied ways provides much of the power of modern 16-bit
computer architectures. Programmers only accustomed
to working with 8-bit machines, such as the 8080, may not
be aware of the need for additional address calculation
schemes. Those having experience with minicomputers
wonder how they could live without them. Examine the
options:

The 8080 provides register implicit (the data address is one
of the processor registers, and the particular register is
specified by the instruction itself), direct (the 16-bit mem-
ory address is in the two bytes following the instruction),
immediate (the required data immediately follows the in-
struction in program memory) and register indirect (a regis-

ter contains the 16-bit memory address required). The Z80
additionally provides program relative (an 8-bit immediate
value locates the required address with respect to the cur-
rent instruction) and indexed (an 8-bit immediate value is
summed with the contents of a 16-bit index register to pro-
vide the 16-bit memory address). What more is required?

As an example of something lacking in the above address-
ing modes, take the case of a subroutine that must access
the contents of a data table, whose starting address is
passed to it by the calling routine. Since the subroutine
must calculate displacements into the table, it is not fea-
sible to use the Z80 index registers, since the relative dis-
placements in that case must be precoded into the instruc-
tion as immediate values. What is usually done in this
case is to have a section of code to first calculate the physi-
cal data address using the table address that was passed to
the subroutine and then to place the calculated address
into the HL register and finally to use the register indirect
addressing mode to access the data. From the standpoint
of machine efficiency it would be better to have an auto-
mated procedure for accessing such data. It is with such
requirements in mind that the more advanced processor
addressing modes are designed.

While discussing the various addressing modes of the
8086 it is helpful to have some insight into how these
modes are coded into 8086 instructions. To begin, con-
sider the 8086 instruction format:

[PP] 1T [MM] [DD...].

Each of the capital letters in the preceding indicates four
bits (a hexadecimal digit) of program code. The square
brackets around a set of letters indicate that the feature is
not always present. PP is the prefix byte (discussed later).
Il is the basic instruction byte, and it is the only feature
that is not optional. MM is the mode byte, and it is this fea-
ture that sets the addressing mode for the particular in-
struction. The reason the mode byte is not always present
is that some instructions, such as CLI (clear the interrupt
flag) do not access data and do not require that a data ad-
dress be generated. Additionally, some instructions per-
form specific operations on register data and for efficiency
are coded into single-byte form with the register specified
by certain bits within the instruction. The DD bytes are
variously immediate data and address displacements that
are tacked onto the end of the instruction when the pre-
vious instruction bytes indicate that they are needed.

For instructions that do access data the instruction and
displacement bytes have the following form:

INSTRUCTION MODE
BYTE BYTE

XXXXXXXW MMRRRAAA

The X's are the basic bits of the instruction. W is a bit used
in many instructions to differentiate between the byte
form of the instruction and the word form. MM stands for
the two mode bits (called “mod” for short hereafter). RRR
stands for the three register bits (called “reg’), and AAA
stands for the three-bit register/memory (r/m) field of the
instruction. The following illustrates the meaning of these
bit patterns:

W=0
W=1

Instruction references byte data.
Instruction references word data.

Lifelines/TheSoftware Magazine, March 1983

mod = 00 Specifies memory addressing with no
displacement bytes. r/m specifies the

particular addressing mode.

mod = 01 Specifies memory addressing with
one displacement byte. r/m specifies

mode.

mod = 10 Specifies memory addressing with
two displacement bytes. r/m specifies

mode.

mod = 11 Specifies register addressing. r/m

specifies a register.

reg Specifies which register is to be used.
reg selects one of eight 8-bit registers
or one of eight 16-bit registers de-
pending on the W bit.

r/m The three-bit value of r/m selects one
of the eight addressing options.

Space limitations prevent giving exhaustive details of ad-
dressing mode selection, but the serious reader can pur-
sue the matter to completion in the previously-referenced
literature, particularly in Rector/Alexy. However, descrip-
tions of the various addressing modes will be found use-
ful.

There are two kinds of addressing of interest. First of all
there is program memory addressing. Secondly there is
data addressing, and data addressing can reference three
different sources for data. Data references can be to pro-
cessor registers, to computer memory and to input/out-
put ports. In the following program memory addressing
and data addressing are discussed separately:

Program Memory Addressing

Program relative addressing uses an 8-bit or a 16-bit im-
mediate data item as a signed binary displacement with
respect to the current instruction address. This is done by
summing the displacement algebraicly with the PC regis-
ter (the 8-bit displacement is sign-extended if negative).
The CS register is not altered, so only references with re-
spect to the current program segment can be made (no
jumps to another another program segment).

Direct addressing uses two 16-bit immediate values to re-
load the PC register and the CS register to produce an ef-
fective jump to another program segment. The first 16-bit
immediate value is loaded into PC, and the second is
loaded into CS.

Indirect addressing uses any one of the standard memory
or register addressing modes (to be discussed next) to ex-
tract either one or two 16-bit address values from a register
or from memory. In the case of a single 16-bit address the
value can come from either memory or from a register,
and this address is loaded into the PC register to produce
an intrasegment transfer. In the case of dual 16-bit address
values only a memory reference is allowed. The first 16-bit
value retrieved from memory is loaded into PC. The sec-
ond 16-bit value is retrieved from memory sequential to
the first, and isloaded into CS to produce an intersegment
transfer.

Lifelines/The Software Magazine, Volume III, Number 10

Data Addressing

Register implicit addressing mode specifies the register
of interest directly within the instruction byte. Some in-
structions, such as the multiply instructions, use always
the same set of registers for data sources and destinations.
Other instructions, such as the decrement 16-bit register
instructions, have a separate form for referencing any one
of the AX, BX, CX, DX, SP, BP, SI or DI registers, and the
register of interest is encoded by three bits within the in-
struction byte.

Immediate memory addressing mode references the data
item immediately following the instruction (and address-
ing mode bytes, if any) in program memory. The data
value must be encoded into the program at assembly time
and may be an 8-bit or a 16-bit value.

Direct memory mode addressing employs a 16-bit ad-
dress value, which is coded into program memory follow-
ing the instruction, to compute the memory address of
the data. This 16-bit value is added to the DS register con-
tents (times 16) to produce the physical memory address.
Therefore the data item referenced will be with respect to
the currently defined Data Segment.

Direct, indexed memory addressing mode employs an
8-bit or 16-bit immediate value (coded in program mem-
ory directly following the instruction), which is algebra-
ically summed with either the DI or the SI register to pro-
duce a 16-bit address value. This value is then added to
the DS register contents (times 16) to compute the physical
address of the data reference.

Implied memory addressing mode is like direct, indexed
memory addressing, except that no 8-bit or 16-bit dis-
placement is provided. The SI or DI contents are added to
the DS contents (times 16) to produce the physical mem-
ory address.

Base relative addressing mode is an extension of the pre-
vious three addressing modes. The contents of the BX reg-
ister are added to the preliminary address, as calculated
by one of these modes, then the resulting 16-bit address is
added to the DS or SS contents (times 16). Allowing either
the DS or the SS register to be specified allows addressing
relative to either the current Data Segment or the current
Stack Segment.

Instruction Prefixes

Something has been mentioned before about instruction
prefix bytes. There are three such prefix bytes (two have

multiple forms). The processor encounters a prefix byte at
a point in its cycle where it would logically expect to en-
counter an instruction, therefore these are really one-byte
instructions. However, they do nothing by themselves,
but only affect the processing of sequential instructions.

The LOCK prefix asserts the processor “lock” status for
the duration of the instruction following the LOCK prefix.
This is useful in multiprocessor applications, and it pre-
vents a companion 8086 processor, having access to
shared memory, from accessing that memory during the
“locked” instruction cycle.

(continued on next page)

The REP prefix causes the string instruction immediately
following to be repeated until the CX register has been
decremented to zero. There are two forms for REP, and
they are interchangable if the succeeding instruction is
MOVS (move byte or word from memory to memory),
LODS (load AL/AX from memory) or STOS (store AL/AX
into memory). However if the following instruction is
CMPS (compare memory with memory) or SCAS (com-
pare AL/AX with memory) then, depending on which
form of REP is coded, the string operation will be termi-
nated on zero or non-zero result.

The SEGMENT prefix has four different forms - one to
specify each of the four segment registers. The implied
segment register for computing a data address for the
following instruction is specified by the SEGMENT pre-
fix. This allows the default segment register for the in-
struction to be overridden by the programmer and allows,
for example, a data item to be retrieved from the current
code segment.

Summary

The 8086 is obviously a much more sophisticated proces-
sor than the 8080 (and even the Z80) with about three
times as much architectural detail to be mastered. The ad-
ditional addressing modes of the 8086 and the symmetry
of operation of the data registers are ideally suited for use
by high level languages, such as Pascal and FORTRAN.
However, assemblers available for the 8086 help to ease
the programmer’s burden of keeping up with the elabo-
rate addressing schemes provided, and a serious pro-
grammer will not shy from using the 8086 in this mode.

The preceding is meant to give an overview of the subject
matter, and much detail indispensible for actually pro-
gramming the 8086 has been omitted for the sake of brev-
ity. Once again, the serious programmer is encouraged to
acquire one or more of the books referenced above (along
with a set of proper program development aids) and to
move up into the world of 16-bit programming.

108

0§ 82 109 5Th X5KI ;ASKTP=BYTE.LOC+!
tAO 02 110 5DLOOZ LDY #XBYTESI

G78:B1 85 11 LOA (SGFRAME.PDINTER),Y ;GET YEYTES
07h:80 D6 82 112 STRA XBYTES
8070:38 113 SEC
BO7E:ED D8 82 114 SBC XASKIP ; ABYTER-XSKIP
8081:8D DY BZ 115 5Th ARUN
2034:30 18 16 BMI INVISIBLE ;INVISIBLE IF REGATIVE
8086:F) 15 17 BED INVISIBLE
808a:A0 01 118 LDY #YOFFSET
808A:E! 85 119 LDA {5GFRAME.POINTER),Y :GET YOFFSET
80BC: 30 28 120 BM1 YOF.NEG
808E: 121 $YOFFSET 2 0
808E:8D CC 82 122 S5TA TEMPL
8071:AD CE 82 123 LDA YHAL
8094:38 124 SEC
8095:ED D3 82 125 SHER ; THAX-Y
8098:38 124 SEC
8097:ED CC 82 127 SBC TEMPL ; LYMAE-YI-YOFFSET
309C: 128 RUNSIGNED COMPARE: YOFFSET:YHAX-Y?
8O9C:BO 06 129 RCS SDLOO3 ;WP IF VISIBLE
BO9E: AT 00 130 INVISIELE LDA #0 1SGFRAME NOT VISIBLE
80A0:8D DC 82 131 §TA VISIBLE.FLAG
80A3: 60 132 RTS (DATS ALL...
B0A4:AD D3 8Z 133 SDLOOZ LDAR Y
80A7:18 134 CLC
B0AB:&D CC 82 135 ADC TEMPL (Y+YOFFGET
80AB:BD DA 82 136 STA YLOC
BOAE: AT GO 137 LIA #0

0B0:80 DF 82 STA YSKIP

g3:4C CC 80 e 5OLOG4

CompuERS PRE SO RINERFUL. BECAUSE 4
THEY ARE 50 Much FASTER THAN US

34 Lifelines/TheSoftware Magazine, March 1983

Product Status

The new software products and new
versions described below and on
page 36 are available from their
authors, computer stores, software
publishers, and distributors. Infor-
mation has been derived from mate-
rial supplied by the authors or their
agents, and Lifelines/The Software
Magazine can assume no responsibil-
ity for its veracity. Software of inter-
est to our readers will be tested and
reviewed in depth at a later date.

New

Products

ACTIVE SOFTWARE MARKETING

Electrical Panel Schedule Program is
a CP/M program for electrical power
engineers that simplifies compliance
with Article 2000 (‘Branch 1 and
Feeder Calculations’) or the National
1 Code. It automates panel schedule
record keeping and calculations
while significantly reducing labor
costs for engineering and drafting.

The operator can add, change or de-
lete loads, breakers and load descrip-
tions for each panel (including sub-
panels or feeds) and can be printed in
a form suitable for publication with
final construction documentation.
Variations from “standard” calcula-
tions are allowed.

A complete system including com-
puter, terminal, printer, word pro-
cessor and the PANEL software is
$4995. PANEL software alone for any
CP/M computer is $1500.

BUSINESS SOFTWARE CORP.

Group Benefits Shoppers™, a soft-
ware package which allows large
agencies or individual agents to shop
the market for group health insur-

Reports

ance for clients with one to fifty em-
ployees is now available for micro-
computers using the CP/M operating
system and the WANG 2200 series
computers. The user selects the in-
surance carriers he desires and is
then able to shop against deducti-
bles, stop loss, maternity, dental RX
card, supplemental accident, take-
over provisions and industry classifi-
cation. A complete set of supporting
utilities and software maintenance
contracts are also available.

CERES SOFTWARE INC.

CERES I is an interactive screen de-
sign and process utility for CP/M
based systems that interfaces with
many popular COBOLs. It consists
of two major components, the inter-
active design screen utility and the
run-time system.

With CERES I's interactive screen de-
sign utility, screens are designed di-
rectly on the terminal. There is no
need to calculate the line number
and column of your fields. Fields can
be inserted, deleted, moved or
copied on the screen for fast and easy
screen design and maintenance. At-
tributes are defined for each field or
default attributes may be used.

CERES I's run-time system accepts,
formats, displays and extensively
validates data. Some of its features
include backup by field or character
for data entry correction and help
messages for data entry clarification.

Suggested retail price is $300. A man-
ual alone is $25.

ELEKTROKONSULT AS
Disk Utilties for the Osborne-1

Elektrokonsult has developed a
series of advanced Disk Utilities for
the Osborne-1. Their main purpose
is to aid the user in avoiding loss of
data from disks.

DTEST tests disks for bad spots. Bad

Lifelines/The Software Magazine, Volume III, Number 10

sectors are collected in a write-pro-
tected file, which reduces the proba-
bililty of disk crashes. UNERA recov-
ers accidentally ERAsed files. DDUP
automatically recovers files with
damaged sectors. DDMP enables
you to examine and patch data on any
sector, making it possible to repair
crashed disks and to recover lost
data.

The utilities will work on SD or DD
disk and on many other CP/M sys-
tems. Each program is $29.95 or
$99.95 for all four (plus $8 air ship-
ping charges).

File Mover

For CP/M users with two or more
CP/M computers with different disk
formats, File Mover is a CP/M to
CP/M file transfer utility which can
transfer any type of CP/M files-in-
cluding program files-from one com-
puter to another over a serial link. It
uses an error detection and correc-
tion protocol with checksums and
automatic retry to ensure error free
file transfer. File Mover runs on 8080,
8085 and the Z80 processor and can
be used with baud rates up to 9600. It
can easily be installed to run on most
CP/M computers with a serial inter-
face. Complete instructions are in-
cluded. It is available on many popu-
lar disk formats, including 8” SS/SD,
Osborne, Rainbow and Zenith (hard-
and soft-sectored). Cost is $59.95
plus $8 for shipping and handling.

LIFEBOAT ASSOCIATES
C-Food Smorgasboard

A collection of useful functions and
utility programs for low-level I/O, ter-
minal independent I/O; decimal
arithmetic, disk directory searching,
direct interface with IBM-PC ROM
BIOS for video and asynch port con-
trol, BDS “C” compatibility.

Executive Alert System
Decision support system for execu-

(continued on next page)

35

tives. Tracks key indicators of com-
pany performamce, does projec-
tions, year-to-date totals. Informa-
tion is presented in raw numbers or
bar charts on screen or IBM printer.
Twenty-six key indicators are pre-
defined, but user can replace them
with his own or add more. Requires
IBM monochrome monitor, 64K ram.
Cost $250.

PACIFIC DATA SYSTEMS, Inc.

Moneytrack, a money management
program for small computers that
meets the standards of professional
accountants is now available from
Pacific Data Systems.

Moneytrack has the capacity to
maintain complete transaction rec-
ords for small businesses, farms or
investments as well as the owner’s
personal accounts. It prepares a vari-
ety of reports to help met the require-
ments of financial institutions and
the Internal Revenue Service, prints
checks on different check forms
and greatly simplifies the job of bank
reconciliation. Users include owners
of small businesses or farms, inves-
tors with many interests, small or
large accounting firms, financial ad-
visors, business managers and pro-
fessionals such as doctors and law-
yers.

Moneytrack is a complete package
with its own operating system so it is
ready to use as soon as the disk is in-
serted in the computer’s disk drive.
No knowledge of programming or
computers is needed. It runs on the
IBM Personal Computer, requires a
64K memory and dual 320K disk
drives. Suggested retail price is $450.

SELVA SYSTEMS INC.

GL/M is a graphics language for
microcomputers operating under
CP/M which turns popular word
processing printers into intelligent
graphics output devices.

Designed for the individual who
must produce information graphs
rather than large presentation graph-
ics, GL/M is a graphics language tool
with an easy-to-learn instruction set
and syntax for microcomputers. Ap-
plications include not only bar, line
and pie charts, but also flow charts,
histograms, figures and illustrations.

Graphs are easy to alter, as single

commands in a GL/M graphics file
can change size, aspect ratio and
other characteristics. Ease of place-
ment allows small, thumbnail
graphs to be integrated with text. The
software’s output drivers are opti-
mized to print quickly and unidirec-
tional printer movement eliminates
paper slippage at the lower edge of
single sheets.

GL/M requires a microcomputer
with 64K, CP/M, two disk drives and
a printer. List price is $295.

TRIGRAM SYSTEMS

DES-Crypt™ is a software imple-
mentation of the National Bureau of
Standards data encryption standard
(DES) algorithm. It protects the priv-
acy and integrity of the information
contained in any file. Possible appli-
cations include protecting confiden-
tial financial information, patient
records, student grades, software,
databases, electronic mail, sensitive
text, etc.

DES-Crypt is alow cost alternative to
dedicated encryption hardware. It
works with any file and includes
functions for encrypting, decrypt-
ing, verifying encryption, data au-
thentication, destroying plaintext,
creating random hexadecimal keys
and listing files.

It is an easy-to-use menu-driven sys-
tem with extensive error checking
and on-line help; no special knowl-
edge is required to use it effective.
The data authentication function can
be used independently of encryp-
tion, so files can be protected against
accidental changes or deliberate tam-
pering without preventing legitimate
access.

Safety features include: automatic
maintenance test, checksums on hex
keys to detect typing errors, redun-
dant key entry, screen echo may be
disabled when entering keys, first
block of all ciphertext files is automa-
tically verified during encryption.
The user can verify the integrity of
any of the programs or files using the
data authentication function.

DES-Crypt is available for 8080/
8085/Z80 systems running CP/M-80
and for the IBM-PC and other 8086/
8088 systems running MS-DOS
(PC-DOS) or CP/M-86.

New

Versions

for CP/M-80

1. ASCOM-80v 2.23

2. DATASTAR v 14
3(dUTIE v Lila

4. Precision BASIC v 1.6
5. Priorities v 1.11

6. Quickcode v 2.1a

7. UNICALC-80v 2.3

for CP/M-86

1 R8s

2. PL/Mycro-86 v 1.17 w/o FLOAT-
ING POINT COMPILER

3. PL/Mycro-87 v 1.17 and v 2.07
w/FLOATING POINT COMPILER
4. PL/1-86

for PCDOS

1. ASCOM-86v 2.23

2. AUTOSORT/86M v 1.08

3. FABS/PC v 1.06

4. LATTICE “C” Compiler v 1.03
5. muMATH/muSIMP-86

6. dBASE-II/PC v 2.3d
7.UNICALC/PCv 2.6

for MS-DOS

1. ASCOM-86v 2.23

2. AUTOSORT/86M v 1.08

3. FABS/86M v 1.06

4. LATTICE “C” Compiler v 1.03
5. UNICALC-86 v 2.6

New

Publications

Let the Government Pay for Your Com-
puter, Vernon K. Jacobs, C.P.A. Re-
search Press Inc.

An eleven-page, single-spaced
report which describes a number of
ways buyers of new desktop-size
computers can justify tax recovery.
Possibilities and limitations are dis-
cussed.

My Computer Understands Me: A
Complete Guide to Computers for the
Dental Office, by Barry Garson,
D.D.S. Published by the author. $40.

Lifelines/TheSoftware Magazine, March 1983

(continued from page 9)

FIGURE 1
LXI H,I ;load starting point
SHLD 1% ;save it

JMP @001 ;enter the loop
;actual loop follows

@002:
LHLD 1% ;load loop pointer
INX H ;step it
SHLD 1% ;save loop pointer
@001:LXI D,64535 ;load max legal integer minus loop size
DAD D ;and add it to loop pointer

JNC @002 ;loop if no overflow

FIGURE 2

LXI DA.REAL ;LOAD POINTER TO INDEX VARIABLE
LXI H,CODE(1) ;LOAD POINTER TO LOOP START VALUE
CALL ?TRMM :ASSIGN BEGINNING VALUE TO A.REAL
JMP @000 :ENTER LOOP

@001;
LXI H.1 ;LOAD STEP VALUE AS INTEGER
CALL ?CRSH ;CONVERT TO REALAND RETURNIND & E
LXI H,A.REAL ;LOAD POINTER TO INDEX VARIABLE
CALL ?ARSM ;LIBRARY ROUTINE TO ADD REAL NUMBERS?
LXI H,A.REAL ;RELOAD POINTER TO INDEX VARIABLE
CALL ?TRMS ;LIBRARY TO SAVE REAL NUMBER?

@000 LXI H,1000 ;LOAD LOOP LIMIT
CALL ?CRSH ;CONVERT TO REAL NUMBER-RESULT IN D&E
LXI H,A.REAL ;RECOVERPOINTER TO INDEX VARIABLE
CALL ?CRMS ;LIBRARY COMPARE OF REAL NUMBERS 7?
JP @000 ;LOOP IF NECESSARY

FIGURE 3A

TEM *#*kk x kX kKKK KAk kKK KRR KA KK KK KRR KA R KKK KKK KR AR KA K KKK KRR Rk k Kk &
rem function to convert JOHN L. JONES to John L. Jones
rem toggle to lower case except 1st char & after “ "
rem written by R. VanNatta 10/24/82
TEOIM * %k k k kkkk kA kK kKK KA KA KKK KR KAk Ak KKK AR A AR KAk KKK KRRk kkk kK A &
def lowcase$(x2) REM FUNCTION NAME
string x2$,lowcase$,scratch$,segment$ REM DECLARATIONS
integer last.character%,character%, pointer%,flag%

scratch$ = left$(x2$,1) REM DONT CHANGE\
FIRST CHAR.

FLAG%=0

last.character% = len(x2%) REM FIND END OF LINE

for pointer% =2 to last.character% REM SET LOOP
segment$ =mid$(x28, pointer%,1) REM EXTRACT CHAR.
character% = asc(segment$) REM GET DECIMAL VAL
if character% >=65\ IF UPPER CASE CHAR

and character% < =90\
and flag%=0then\

segment$ =\ FLIP BIT TO LOW CASE
chr(character% + 32)
if character%=32 then\ IF SPACE SET FLAG
flagio=1\ FOR NEXT LOOP
else\ OTHERWISE
flagto=0 REM CANCEL FLAG
scratch$ = scratch$ + segment$ REM REBUILD STRING
next pointer% REM LOOP

lowcase$ = scratch$
fend

FIGURE 3B

rem (B E R E R R R R R R S R
rem function to convert JOHN L. JONES to John L. Jones
rem demonstrates nested IFTHEN
rem R. VanNatta version 11/12/82

TEIM * Xk k kk k k kK KKK XK AK KKK KRR A A KK KKK KRR KK AR K KKK KRR KKK KRR R K Kk & %

def lowcase$(x2$) REM FUNCTION NAME
string x28,lowcase$, scratch$,segment$ REM DECLARATIONS
integer last.character%,character%, pointer%,flag%
scratch$ = left$(x2$,1) REM SKIP 1ST CHAR
last.character% =len(x2$) REM FIND END OF LINE
flag¥o=0
for pointer% = 2 to last.character% REM SET LOOP
segment$ = mid$(x2$, pointer%o,1) REM EXTRACT CHAR.
character% =asc(segment$) REM GET DECIMAL VAL
if character% < =65 THEN\ IF LOW RANGE CHECK
if character%= 32 then \ FOR SPACE (CHR(32))
and
flagto=1\ SETFLAG
else\ OTHERWISE RELEASE
FLAG
flaglo=0\ AND SKIP TO END
ELSE\
if lag% =1 then\ IF FLAG SET
flago=0\ RELEASE IT AND SKIP
else\ OTHERWISE

if character% < =90 then\ TEST HIGH RANGE
segment$ = chr$(character% + 32)

REM FLIP BIT
scratch$ = scratch$ + segment$ REM REBUILD STRING
next pointer%
lowcase$ = scratch$
fend

FIGURE 4

REM IR Y

REM THIS FUNCTION WILL FLASH MESSAGE IN INVERSE VIDEO IN
REM CENTER OF LINE 3 OF SCREEN
REM SEE OCTOBER 1982LIFELINES FORADDITIONAL EXPLANATION
REM R R R R R R R R R R R R R Y
common clear.screen$,addrcursor$,reversevideotoggle$,\
resetvideo.toggle$,delete.to.end$

def at$(x1%) external rem function for abs
string at$ rem cursor position

fend

def inverse$(x2$) external rem FN for reverse
string inverse$ rem video of string

fend

def flasher(message$) public

integer index,delay rem declare variables

forindex = 1TO6
call at$(280-(len(message$)/2)) rem position cursor
if mod(index,2) =0 then\ rem set up flip flop
print deletetoend$.\ rem delete on odd numbers
else\
print inverse$(message$) rem print on even numbers
for delay=1T0 10000 :next delay rem delay
nextindex rem do it 6 times
fend rem return

—I—“mr—zmm:.\ The Software _/_m.@mN_sz Second Class Postage Paid

1651 Third Avenue, New York, New York 10028 At New York, N.Y.

